Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285611407> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4285611407 endingPage "16740" @default.
- W4285611407 startingPage "16728" @default.
- W4285611407 abstract "Recent studies have demonstrated the potentials of federated learning (FL) in achieving cooperative and privacy-preserving data analytics. It would also be promising if FL can be employed in vehicular ad hoc networks (VANETs) for cooperative learning tasks, such as steering angle prediction, trajectory prediction, drivable road detection, etc., among integrated vehicles. However, since VANETs are characterized by ad hoc cooperating vehicles with non-independent and identically distributed (Non-IID) data, directly employing existing FL frameworks to VANETs may cause extensive communication overhead and compromised model performance. Further, most of the existing deep learning models incorporated in FL frameworks rely heavily on data with manual annotations, leading to a huge labor cost. To address these issues, in this paper we propose an efficient and effective Federated End-to-End Learning framework for cooperative learning tasks in VANETs, named FEEL. Specifically, we first formulate a distributed optimization problem for cooperative deep learning tasks with Non-IID data in multi-hop cluster VANETs. Second, two algorithms for inter-cluster learning and inner-cluster learning are respectively designed, to reduce the communication overhead and fit Non-IID data. Third, a Paillier-based communication protocol is crafted, allowing secure model parameter updates at the central server without knowing the real updates at each cooperating base station. Extensive experiments on two real-world datasets are conducted by considering various data distributions and VANET topologies, demonstrating the high efficiency and effectiveness of the proposed FEEL framework in both regression and classification tasks." @default.
- W4285611407 created "2022-07-16" @default.
- W4285611407 creator A5030771414 @default.
- W4285611407 creator A5047329587 @default.
- W4285611407 creator A5065373445 @default.
- W4285611407 creator A5070447777 @default.
- W4285611407 creator A5072397464 @default.
- W4285611407 creator A5075508353 @default.
- W4285611407 date "2022-09-01" @default.
- W4285611407 modified "2023-10-11" @default.
- W4285611407 title "FEEL: Federated End-to-End Learning With Non-IID Data for Vehicular Ad Hoc Networks" @default.
- W4285611407 cites W1992868479 @default.
- W4285611407 cites W2051267297 @default.
- W4285611407 cites W2079778357 @default.
- W4285611407 cites W2112796928 @default.
- W4285611407 cites W2132172731 @default.
- W4285611407 cites W2194775991 @default.
- W4285611407 cites W2355550369 @default.
- W4285611407 cites W2424778531 @default.
- W4285611407 cites W2443552644 @default.
- W4285611407 cites W2473418344 @default.
- W4285611407 cites W2535690855 @default.
- W4285611407 cites W2559767995 @default.
- W4285611407 cites W2869375357 @default.
- W4285611407 cites W2911486422 @default.
- W4285611407 cites W2912213068 @default.
- W4285611407 cites W2928400613 @default.
- W4285611407 cites W2930926105 @default.
- W4285611407 cites W2948153973 @default.
- W4285611407 cites W2963292632 @default.
- W4285611407 cites W2963945905 @default.
- W4285611407 cites W2983694339 @default.
- W4285611407 cites W2997958396 @default.
- W4285611407 cites W3015615481 @default.
- W4285611407 cites W3026202797 @default.
- W4285611407 cites W3035996294 @default.
- W4285611407 cites W3086579950 @default.
- W4285611407 cites W3127869230 @default.
- W4285611407 cites W3135231128 @default.
- W4285611407 cites W3137605545 @default.
- W4285611407 cites W3158003593 @default.
- W4285611407 cites W4210287531 @default.
- W4285611407 cites W4229609468 @default.
- W4285611407 doi "https://doi.org/10.1109/tits.2022.3190294" @default.
- W4285611407 hasPublicationYear "2022" @default.
- W4285611407 type Work @default.
- W4285611407 citedByCount "4" @default.
- W4285611407 countsByYear W42856114072023 @default.
- W4285611407 crossrefType "journal-article" @default.
- W4285611407 hasAuthorship W4285611407A5030771414 @default.
- W4285611407 hasAuthorship W4285611407A5047329587 @default.
- W4285611407 hasAuthorship W4285611407A5065373445 @default.
- W4285611407 hasAuthorship W4285611407A5070447777 @default.
- W4285611407 hasAuthorship W4285611407A5072397464 @default.
- W4285611407 hasAuthorship W4285611407A5075508353 @default.
- W4285611407 hasConcept C192448918 @default.
- W4285611407 hasConcept C31258907 @default.
- W4285611407 hasConcept C41008148 @default.
- W4285611407 hasConcept C555944384 @default.
- W4285611407 hasConcept C74296488 @default.
- W4285611407 hasConcept C76155785 @default.
- W4285611407 hasConcept C94523657 @default.
- W4285611407 hasConceptScore W4285611407C192448918 @default.
- W4285611407 hasConceptScore W4285611407C31258907 @default.
- W4285611407 hasConceptScore W4285611407C41008148 @default.
- W4285611407 hasConceptScore W4285611407C555944384 @default.
- W4285611407 hasConceptScore W4285611407C74296488 @default.
- W4285611407 hasConceptScore W4285611407C76155785 @default.
- W4285611407 hasConceptScore W4285611407C94523657 @default.
- W4285611407 hasFunder F4320321001 @default.
- W4285611407 hasFunder F4320333335 @default.
- W4285611407 hasFunder F4320335476 @default.
- W4285611407 hasFunder F4320335777 @default.
- W4285611407 hasIssue "9" @default.
- W4285611407 hasLocation W42856114071 @default.
- W4285611407 hasOpenAccess W4285611407 @default.
- W4285611407 hasPrimaryLocation W42856114071 @default.
- W4285611407 hasRelatedWork W1986754724 @default.
- W4285611407 hasRelatedWork W2072106251 @default.
- W4285611407 hasRelatedWork W2107581126 @default.
- W4285611407 hasRelatedWork W2171926540 @default.
- W4285611407 hasRelatedWork W2316077766 @default.
- W4285611407 hasRelatedWork W2430898043 @default.
- W4285611407 hasRelatedWork W2467871681 @default.
- W4285611407 hasRelatedWork W2765583049 @default.
- W4285611407 hasRelatedWork W2768875466 @default.
- W4285611407 hasRelatedWork W2941933187 @default.
- W4285611407 hasVolume "23" @default.
- W4285611407 isParatext "false" @default.
- W4285611407 isRetracted "false" @default.
- W4285611407 workType "article" @default.