Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285655391> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4285655391 endingPage "IA21" @default.
- W4285655391 startingPage "IA21" @default.
- W4285655391 abstract "Abstract Ongoing epidemiologic studies represent national (and international) treasures of data—with information spanning behavior, environment, genetics, genomics, and heath—that are nearly impossible to replicate. Many existing cancer cohorts uniquely enable full understanding of cancer etiology and prognosis by integrating multiple data types, and providing data across years of follow-up, often both before and after cancer diagnosis. These combinations of many data types and many years of follow-up are critical to effective research and discovery, since cancers develop and progress over years, if not decades, and result from the combined influence of behavior, environment, and genomics. However, facilitating and simplifying the full utilization of complex epidemiologic data by an array of interdisciplinary scientists is a large endeavor. In particular, many cohorts still operate with data management, access, and analytic systems that date to their initiation—many years before modern data science and computing approaches existed. Updating of systems for leveraging cohorts is necessary across many fronts; as a case study, the Nurses’ Health Study has been working on the following span of projects to create new, cloud-based platforms for research: 1. Data Management: (i) organize all data into a small number of files (e.g., one for questionnaire data, one for disease data, one for biomarker data, etc.) that are easy to find and use; (ii) harmonize data across all time periods of follow-up; and (iii) clean all data to remove stray codes and notations. 2. Data Visualization: develop software that generates visualizations of participant profiles, spanning behavior, environment, genomics, and diagnoses/health outcomes. 3. Data Analysis: create a suite of interfaces to open-source tools enabling researchers to: (i) create phenotypes and behavioral variables; (ii) access, filter, and merge biologic and genomic data; (iii) integrate cancer data; and (iv) conduct statistical analyses. 4. Training/Education: develop documentation and educational materials for all data, tools, and software, designed to empower investigators and reduce extraneous efforts in scientific exploration of epidemiologic data. There have been many initial successes (examples will be presented), heavily supported by teaming with data science experts from prominent institutions and industry, who bring modern tools, software, and knowledge to epidemiology and computing. Ongoing challenges include identifying funding sources for such large infrastructure projects, especially data management tasks, which are not highly marketable. Psychological barriers exist as well in convincing multiple generations of investigators to learn new systems and skills. Overall, modernizing large cancer cohorts is an intimidating although crucial venture, which will permit fully leveraging existing cancer epidemiology cohorts to accelerate novel research into cancer prevention and treatment. Citation Format: Francine Grodstein. Leveraging modern data science to optimize discovery within epidemiologic treasures: Case study—the Nurses’ Health Study [abstract]. In: Proceedings of the AACR Special Conference on Modernizing Population Sciences in the Digital Age; 2019 Feb 19-22; San Diego, CA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2020;29(9 Suppl):Abstract nr IA21." @default.
- W4285655391 created "2022-07-17" @default.
- W4285655391 creator A5088908376 @default.
- W4285655391 date "2020-09-01" @default.
- W4285655391 modified "2023-09-27" @default.
- W4285655391 title "Abstract IA21: Leveraging modern data science to optimize discovery within epidemiologic treasures: Case study—the Nurses’ Health Study" @default.
- W4285655391 doi "https://doi.org/10.1158/1538-7755.modpop19-ia21" @default.
- W4285655391 hasPublicationYear "2020" @default.
- W4285655391 type Work @default.
- W4285655391 citedByCount "0" @default.
- W4285655391 crossrefType "journal-article" @default.
- W4285655391 hasAuthorship W4285655391A5088908376 @default.
- W4285655391 hasConcept C105795698 @default.
- W4285655391 hasConcept C124101348 @default.
- W4285655391 hasConcept C133462117 @default.
- W4285655391 hasConcept C136764020 @default.
- W4285655391 hasConcept C142724271 @default.
- W4285655391 hasConcept C1668388 @default.
- W4285655391 hasConcept C204787440 @default.
- W4285655391 hasConcept C2522767166 @default.
- W4285655391 hasConcept C2777516300 @default.
- W4285655391 hasConcept C2779965156 @default.
- W4285655391 hasConcept C33923547 @default.
- W4285655391 hasConcept C41008148 @default.
- W4285655391 hasConcept C71924100 @default.
- W4285655391 hasConcept C93518851 @default.
- W4285655391 hasConceptScore W4285655391C105795698 @default.
- W4285655391 hasConceptScore W4285655391C124101348 @default.
- W4285655391 hasConceptScore W4285655391C133462117 @default.
- W4285655391 hasConceptScore W4285655391C136764020 @default.
- W4285655391 hasConceptScore W4285655391C142724271 @default.
- W4285655391 hasConceptScore W4285655391C1668388 @default.
- W4285655391 hasConceptScore W4285655391C204787440 @default.
- W4285655391 hasConceptScore W4285655391C2522767166 @default.
- W4285655391 hasConceptScore W4285655391C2777516300 @default.
- W4285655391 hasConceptScore W4285655391C2779965156 @default.
- W4285655391 hasConceptScore W4285655391C33923547 @default.
- W4285655391 hasConceptScore W4285655391C41008148 @default.
- W4285655391 hasConceptScore W4285655391C71924100 @default.
- W4285655391 hasConceptScore W4285655391C93518851 @default.
- W4285655391 hasIssue "9_Supplement" @default.
- W4285655391 hasLocation W42856553911 @default.
- W4285655391 hasOpenAccess W4285655391 @default.
- W4285655391 hasPrimaryLocation W42856553911 @default.
- W4285655391 hasRelatedWork W1653755036 @default.
- W4285655391 hasRelatedWork W1912210880 @default.
- W4285655391 hasRelatedWork W2551101717 @default.
- W4285655391 hasRelatedWork W2591741271 @default.
- W4285655391 hasRelatedWork W2794428782 @default.
- W4285655391 hasRelatedWork W2891260744 @default.
- W4285655391 hasRelatedWork W2941163790 @default.
- W4285655391 hasRelatedWork W2952429993 @default.
- W4285655391 hasRelatedWork W3107766333 @default.
- W4285655391 hasRelatedWork W4289552465 @default.
- W4285655391 hasVolume "29" @default.
- W4285655391 isParatext "false" @default.
- W4285655391 isRetracted "false" @default.
- W4285655391 workType "article" @default.