Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285671885> ?p ?o ?g. }
- W4285671885 endingPage "116243" @default.
- W4285671885 startingPage "116243" @default.
- W4285671885 abstract "Mantle convection and plate dynamics transfer and deform solid material on scales of hundreds to thousands of km. However, viscoplastic deformation of rocks arises from motions of defects at sub-crystal scale, such as vacancies or dislocations. In this study, results from numerical experiments of dislocation dynamics in olivine for temperatures and stresses relevant for both lithospheric and asthenospheric mantle (800–1700 K and 50–500 MPa; Gouriet et al., 2019) are used to derive three sigmoid parameterizations (erf, tanh, algebraic), which express stress evolution as a function of temperature and strain rate. The three parameterizations fit well the results of dislocation dynamics models and may be easily incorporated into geodynamical models. Here, they are used in an upper mantle thermo-mechanical model of subduction, in association with diffusion creep and pseudo-brittle flow laws. Simulations using different dislocation creep parameterizations exhibit distinct dynamics, from unrealistically fast-sinking slabs in the erf case to very slowly-sinking slabs in the algebraic case. These differences could not have been predicted a priori from comparison with experimentally determined mechanical data, since they principally arise from feedbacks between slab sinking velocity, temperature, drag, and buoyancy, which are controlled by the strain rate dependence of the effective asthenosphere viscosity. Comparison of model predictions to geophysical observations and to upper-mantle viscosity inferred from glacial isostatic adjustment shows that the tanh parameterization best fits both crystal-scale and Earth-scale constraints. However, the parameterization of diffusion creep is also important for subduction bulk dynamics since it sets the viscosity of slowly deforming domains in the convecting mantle. Within the range of uncertainties of experimental data and, most importantly, of the actual rheological parameters prevailing in the upper mantle (e.g. grain size, chemistry), viscosity enabling realistic mantle properties and plate dynamics may be reproduced by several combinations of parameterizations for different deformation mechanisms. Deriving mantle rheology cannot therefore rely solely on the extrapolation of semi-empirical flow laws. The present study shows that thermo-mechanical models of plate and mantle dynamics can be used to constrain the effective rheology of Earth's mantle in the presence of multiple deformation mechanisms." @default.
- W4285671885 created "2022-07-17" @default.
- W4285671885 creator A5000472346 @default.
- W4285671885 creator A5022003702 @default.
- W4285671885 creator A5030888359 @default.
- W4285671885 creator A5043686501 @default.
- W4285671885 creator A5091065111 @default.
- W4285671885 date "2020-06-01" @default.
- W4285671885 modified "2023-10-12" @default.
- W4285671885 title "Using thermo-mechanical models of subduction to constrain effective mantle viscosity" @default.
- W4285671885 cites W1493790006 @default.
- W4285671885 cites W1521394556 @default.
- W4285671885 cites W1727327237 @default.
- W4285671885 cites W1830562234 @default.
- W4285671885 cites W1834846367 @default.
- W4285671885 cites W1944960797 @default.
- W4285671885 cites W1964948897 @default.
- W4285671885 cites W1969768838 @default.
- W4285671885 cites W1976860947 @default.
- W4285671885 cites W1979890045 @default.
- W4285671885 cites W1983358090 @default.
- W4285671885 cites W1989757560 @default.
- W4285671885 cites W1993559527 @default.
- W4285671885 cites W1998601546 @default.
- W4285671885 cites W2000002848 @default.
- W4285671885 cites W2014972357 @default.
- W4285671885 cites W2017588800 @default.
- W4285671885 cites W2023643655 @default.
- W4285671885 cites W2028406066 @default.
- W4285671885 cites W2035501773 @default.
- W4285671885 cites W2035798381 @default.
- W4285671885 cites W2058521236 @default.
- W4285671885 cites W2060486934 @default.
- W4285671885 cites W2098031509 @default.
- W4285671885 cites W2108298625 @default.
- W4285671885 cites W2114492757 @default.
- W4285671885 cites W2129333755 @default.
- W4285671885 cites W2137314205 @default.
- W4285671885 cites W2138088651 @default.
- W4285671885 cites W2140012723 @default.
- W4285671885 cites W2158755289 @default.
- W4285671885 cites W2163461684 @default.
- W4285671885 cites W2171212919 @default.
- W4285671885 cites W2195100629 @default.
- W4285671885 cites W2266100410 @default.
- W4285671885 cites W2316354122 @default.
- W4285671885 cites W2517147277 @default.
- W4285671885 cites W2726926132 @default.
- W4285671885 cites W2790118823 @default.
- W4285671885 cites W2794707041 @default.
- W4285671885 cites W2899204758 @default.
- W4285671885 cites W2900597410 @default.
- W4285671885 cites W2901500549 @default.
- W4285671885 cites W3007174238 @default.
- W4285671885 doi "https://doi.org/10.1016/j.epsl.2020.116243" @default.
- W4285671885 hasPublicationYear "2020" @default.
- W4285671885 type Work @default.
- W4285671885 citedByCount "8" @default.
- W4285671885 countsByYear W42856718852021 @default.
- W4285671885 countsByYear W42856718852022 @default.
- W4285671885 countsByYear W42856718852023 @default.
- W4285671885 crossrefType "journal-article" @default.
- W4285671885 hasAuthorship W4285671885A5000472346 @default.
- W4285671885 hasAuthorship W4285671885A5022003702 @default.
- W4285671885 hasAuthorship W4285671885A5030888359 @default.
- W4285671885 hasAuthorship W4285671885A5043686501 @default.
- W4285671885 hasAuthorship W4285671885A5091065111 @default.
- W4285671885 hasBestOaLocation W42856718851 @default.
- W4285671885 hasConcept C121332964 @default.
- W4285671885 hasConcept C127313418 @default.
- W4285671885 hasConcept C13495919 @default.
- W4285671885 hasConcept C149342994 @default.
- W4285671885 hasConcept C149912024 @default.
- W4285671885 hasConcept C165205528 @default.
- W4285671885 hasConcept C16942324 @default.
- W4285671885 hasConcept C187059263 @default.
- W4285671885 hasConcept C190799397 @default.
- W4285671885 hasConcept C191897082 @default.
- W4285671885 hasConcept C192562407 @default.
- W4285671885 hasConcept C47908070 @default.
- W4285671885 hasConcept C57879066 @default.
- W4285671885 hasConcept C58097730 @default.
- W4285671885 hasConcept C67236022 @default.
- W4285671885 hasConcept C77928131 @default.
- W4285671885 hasConcept C8058405 @default.
- W4285671885 hasConcept C81764414 @default.
- W4285671885 hasConcept C87976508 @default.
- W4285671885 hasConcept C97355855 @default.
- W4285671885 hasConceptScore W4285671885C121332964 @default.
- W4285671885 hasConceptScore W4285671885C127313418 @default.
- W4285671885 hasConceptScore W4285671885C13495919 @default.
- W4285671885 hasConceptScore W4285671885C149342994 @default.
- W4285671885 hasConceptScore W4285671885C149912024 @default.
- W4285671885 hasConceptScore W4285671885C165205528 @default.
- W4285671885 hasConceptScore W4285671885C16942324 @default.
- W4285671885 hasConceptScore W4285671885C187059263 @default.
- W4285671885 hasConceptScore W4285671885C190799397 @default.
- W4285671885 hasConceptScore W4285671885C191897082 @default.