Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285676265> ?p ?o ?g. }
- W4285676265 endingPage "109569" @default.
- W4285676265 startingPage "109569" @default.
- W4285676265 abstract "Effective fault diagnosis is important to ensure the reliability, safety, and efficiency of industrial robots. This article proposes a simple yet effective data acquisition strategy based on transmission mechanism analysis, using only one attitude sensor mounted on an end effector or an output component to monitor the attitude of all transmission components. Unlike widely used vibration-monitoring signals, attitude signals can provide fault features reflecting spatial relationships. Using one attitude sensor facilitates the data collection, but weakens fault features and introduces strong background noise in attitude signals. To learn discriminative features from the attitude data collected by the attitude sensor, a multiscale convolutional capsule network (MCCN) is proposed. In MCCN, integrating low-level and high-level features in a convolutional neural network (CNN) as multiscale features is conductive to noise reduction and robust feature extraction, and a capsule network (CapsNet) is used to recognize the spatial relationships in attitude data. The extracted multiscale features in CNN and the spatial-relational features in CapsNet are fused for effective fault diagnosis of industrial robots. The performance of MCCN is evaluated by attaching a softmax-based classifier and integrating it into different transfer learning frameworks to diagnose faults in industrial robots under single and variable working conditions, respectively. Fault diagnosis experiments were conducted on a 6-axis series industrial robot and a parallel robot-driven 3D printer. The superiority of the proposed MCCN was demonstrated by comparing its performance with the other feature learning methods." @default.
- W4285676265 created "2022-07-17" @default.
- W4285676265 creator A5043140947 @default.
- W4285676265 creator A5045740528 @default.
- W4285676265 creator A5053958450 @default.
- W4285676265 creator A5076710665 @default.
- W4285676265 creator A5091588045 @default.
- W4285676265 date "2023-01-01" @default.
- W4285676265 modified "2023-10-12" @default.
- W4285676265 title "Discriminative feature learning using a multiscale convolutional capsule network from attitude data for fault diagnosis of industrial robots" @default.
- W4285676265 cites W1967879920 @default.
- W4285676265 cites W2028200311 @default.
- W4285676265 cites W2096943734 @default.
- W4285676265 cites W2164943005 @default.
- W4285676265 cites W2246023205 @default.
- W4285676265 cites W2316755448 @default.
- W4285676265 cites W2331577291 @default.
- W4285676265 cites W2346079943 @default.
- W4285676265 cites W2559850636 @default.
- W4285676265 cites W2584994008 @default.
- W4285676265 cites W2591055632 @default.
- W4285676265 cites W2744790985 @default.
- W4285676265 cites W2763583057 @default.
- W4285676265 cites W2808496542 @default.
- W4285676265 cites W2889383235 @default.
- W4285676265 cites W2898375427 @default.
- W4285676265 cites W2903917280 @default.
- W4285676265 cites W2964288524 @default.
- W4285676265 cites W2973093569 @default.
- W4285676265 cites W2999309480 @default.
- W4285676265 cites W3009370740 @default.
- W4285676265 cites W3015362700 @default.
- W4285676265 cites W3025981493 @default.
- W4285676265 cites W3040853111 @default.
- W4285676265 cites W3041173183 @default.
- W4285676265 cites W3060850527 @default.
- W4285676265 cites W3083796308 @default.
- W4285676265 cites W3095770430 @default.
- W4285676265 cites W3122347867 @default.
- W4285676265 cites W3126536330 @default.
- W4285676265 cites W3137896025 @default.
- W4285676265 cites W3167126097 @default.
- W4285676265 cites W3174151364 @default.
- W4285676265 cites W3194185277 @default.
- W4285676265 cites W3198551245 @default.
- W4285676265 cites W3199573059 @default.
- W4285676265 cites W3201521609 @default.
- W4285676265 cites W3207610166 @default.
- W4285676265 cites W3215227219 @default.
- W4285676265 cites W4206258998 @default.
- W4285676265 cites W4226058060 @default.
- W4285676265 cites W4239510810 @default.
- W4285676265 cites W4288058759 @default.
- W4285676265 doi "https://doi.org/10.1016/j.ymssp.2022.109569" @default.
- W4285676265 hasPublicationYear "2023" @default.
- W4285676265 type Work @default.
- W4285676265 citedByCount "20" @default.
- W4285676265 countsByYear W42856762652022 @default.
- W4285676265 countsByYear W42856762652023 @default.
- W4285676265 crossrefType "journal-article" @default.
- W4285676265 hasAuthorship W4285676265A5043140947 @default.
- W4285676265 hasAuthorship W4285676265A5045740528 @default.
- W4285676265 hasAuthorship W4285676265A5053958450 @default.
- W4285676265 hasAuthorship W4285676265A5076710665 @default.
- W4285676265 hasAuthorship W4285676265A5091588045 @default.
- W4285676265 hasBestOaLocation W42856762651 @default.
- W4285676265 hasConcept C119857082 @default.
- W4285676265 hasConcept C153180895 @default.
- W4285676265 hasConcept C154945302 @default.
- W4285676265 hasConcept C188441871 @default.
- W4285676265 hasConcept C41008148 @default.
- W4285676265 hasConcept C52622490 @default.
- W4285676265 hasConcept C81363708 @default.
- W4285676265 hasConcept C90509273 @default.
- W4285676265 hasConcept C97931131 @default.
- W4285676265 hasConceptScore W4285676265C119857082 @default.
- W4285676265 hasConceptScore W4285676265C153180895 @default.
- W4285676265 hasConceptScore W4285676265C154945302 @default.
- W4285676265 hasConceptScore W4285676265C188441871 @default.
- W4285676265 hasConceptScore W4285676265C41008148 @default.
- W4285676265 hasConceptScore W4285676265C52622490 @default.
- W4285676265 hasConceptScore W4285676265C81363708 @default.
- W4285676265 hasConceptScore W4285676265C90509273 @default.
- W4285676265 hasConceptScore W4285676265C97931131 @default.
- W4285676265 hasLocation W42856762651 @default.
- W4285676265 hasOpenAccess W4285676265 @default.
- W4285676265 hasPrimaryLocation W42856762651 @default.
- W4285676265 hasRelatedWork W2285052147 @default.
- W4285676265 hasRelatedWork W2406522397 @default.
- W4285676265 hasRelatedWork W2518599539 @default.
- W4285676265 hasRelatedWork W2725397116 @default.
- W4285676265 hasRelatedWork W2739417350 @default.
- W4285676265 hasRelatedWork W2743258233 @default.
- W4285676265 hasRelatedWork W2758063741 @default.
- W4285676265 hasRelatedWork W2807311372 @default.
- W4285676265 hasRelatedWork W2977314777 @default.
- W4285676265 hasRelatedWork W4366723329 @default.
- W4285676265 hasVolume "182" @default.