Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285676269> ?p ?o ?g. }
- W4285676269 endingPage "109543" @default.
- W4285676269 startingPage "109543" @default.
- W4285676269 abstract "Prediction of the train body vibrations induced by the train running is desirable and useful to ensure comfortable service, reliable, safe, and secure operation of railway systems. By using daily measurement data from GJ-5 rail detection vehicle, this paper presents a novel prediction algorithm, which is based on bagged tree ensemble regression with multiple correlation coefficients. To obtain the valuable data sets from a large amount of inspection data, an approach of multiple correlation coefficients is used for the data pre-processing. Then the prediction model of train body vibrations is established by combining regression tree algorithm and bagged ensemble algorithm. By training the valuable data sets, the prediction results are calculated by the bagged tree ensemble regression method. Finally, the proposed method is evaluated with experimental data and the traditional method. The experimental results show that the proposed method not only has higher accuracy but also can effectively reduce the number of the data sets, the accuracy is up to 98% and the number of valuable training data sets is reduced by 78.3%. The new method proposed in the paper can accurately predict the vibration status of the train body without installing any new sensors and other monitoring equipment on the train, which can reduce maintenance costs and prevent potential safety risks." @default.
- W4285676269 created "2022-07-17" @default.
- W4285676269 creator A5013085008 @default.
- W4285676269 creator A5035768028 @default.
- W4285676269 creator A5067546362 @default.
- W4285676269 creator A5075553656 @default.
- W4285676269 creator A5081614960 @default.
- W4285676269 date "2023-01-01" @default.
- W4285676269 modified "2023-10-13" @default.
- W4285676269 title "A novel bagged tree ensemble regression method with multiple correlation coefficients to predict the train body vibrations using rail inspection data" @default.
- W4285676269 cites W1989893168 @default.
- W4285676269 cites W1998521064 @default.
- W4285676269 cites W2000618191 @default.
- W4285676269 cites W2065307248 @default.
- W4285676269 cites W2076934976 @default.
- W4285676269 cites W2106372670 @default.
- W4285676269 cites W2130515569 @default.
- W4285676269 cites W2135006320 @default.
- W4285676269 cites W2135834642 @default.
- W4285676269 cites W2167970498 @default.
- W4285676269 cites W2488041515 @default.
- W4285676269 cites W2567236077 @default.
- W4285676269 cites W2606130348 @default.
- W4285676269 cites W2738176645 @default.
- W4285676269 cites W2750682556 @default.
- W4285676269 cites W2755561175 @default.
- W4285676269 cites W2767649117 @default.
- W4285676269 cites W2785093363 @default.
- W4285676269 cites W2800963862 @default.
- W4285676269 cites W2884102179 @default.
- W4285676269 cites W2885647151 @default.
- W4285676269 cites W2890981503 @default.
- W4285676269 cites W2891221748 @default.
- W4285676269 cites W2904286681 @default.
- W4285676269 cites W2904579018 @default.
- W4285676269 cites W2908009528 @default.
- W4285676269 cites W2921720930 @default.
- W4285676269 cites W2933696804 @default.
- W4285676269 cites W2942231644 @default.
- W4285676269 cites W2944572808 @default.
- W4285676269 cites W2946547927 @default.
- W4285676269 cites W2963231697 @default.
- W4285676269 cites W2965638680 @default.
- W4285676269 cites W2973398032 @default.
- W4285676269 cites W2990742004 @default.
- W4285676269 cites W2994982829 @default.
- W4285676269 cites W2999597535 @default.
- W4285676269 cites W3011332996 @default.
- W4285676269 cites W3011890913 @default.
- W4285676269 cites W3014303592 @default.
- W4285676269 cites W3015039748 @default.
- W4285676269 cites W3015537927 @default.
- W4285676269 cites W3018762295 @default.
- W4285676269 cites W3045371493 @default.
- W4285676269 cites W3048646098 @default.
- W4285676269 cites W3054552769 @default.
- W4285676269 cites W3082119399 @default.
- W4285676269 cites W3082154152 @default.
- W4285676269 cites W3114177701 @default.
- W4285676269 doi "https://doi.org/10.1016/j.ymssp.2022.109543" @default.
- W4285676269 hasPublicationYear "2023" @default.
- W4285676269 type Work @default.
- W4285676269 citedByCount "4" @default.
- W4285676269 countsByYear W42856762692022 @default.
- W4285676269 countsByYear W42856762692023 @default.
- W4285676269 crossrefType "journal-article" @default.
- W4285676269 hasAuthorship W4285676269A5013085008 @default.
- W4285676269 hasAuthorship W4285676269A5035768028 @default.
- W4285676269 hasAuthorship W4285676269A5067546362 @default.
- W4285676269 hasAuthorship W4285676269A5075553656 @default.
- W4285676269 hasAuthorship W4285676269A5081614960 @default.
- W4285676269 hasBestOaLocation W42856762691 @default.
- W4285676269 hasConcept C105795698 @default.
- W4285676269 hasConcept C113174947 @default.
- W4285676269 hasConcept C119857082 @default.
- W4285676269 hasConcept C121332964 @default.
- W4285676269 hasConcept C124101348 @default.
- W4285676269 hasConcept C127413603 @default.
- W4285676269 hasConcept C134306372 @default.
- W4285676269 hasConcept C152877465 @default.
- W4285676269 hasConcept C198394728 @default.
- W4285676269 hasConcept C2776870768 @default.
- W4285676269 hasConcept C33923547 @default.
- W4285676269 hasConcept C41008148 @default.
- W4285676269 hasConcept C62520636 @default.
- W4285676269 hasConcept C83546350 @default.
- W4285676269 hasConcept C84525736 @default.
- W4285676269 hasConceptScore W4285676269C105795698 @default.
- W4285676269 hasConceptScore W4285676269C113174947 @default.
- W4285676269 hasConceptScore W4285676269C119857082 @default.
- W4285676269 hasConceptScore W4285676269C121332964 @default.
- W4285676269 hasConceptScore W4285676269C124101348 @default.
- W4285676269 hasConceptScore W4285676269C127413603 @default.
- W4285676269 hasConceptScore W4285676269C134306372 @default.
- W4285676269 hasConceptScore W4285676269C152877465 @default.
- W4285676269 hasConceptScore W4285676269C198394728 @default.
- W4285676269 hasConceptScore W4285676269C2776870768 @default.
- W4285676269 hasConceptScore W4285676269C33923547 @default.