Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285676809> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4285676809 endingPage "2102" @default.
- W4285676809 startingPage "2091" @default.
- W4285676809 abstract "The estimation of protein model accuracy (EMA) or model quality assessment (QA) is important for protein structure prediction. An accurate EMA algorithm can guide the refinement of models or pick the best model or best parts of models from a pool of predicted tertiary structures. We developed two novel methods: MASS2 and LAW, for predicting residue-specific or local qualities of individual models, which incorporate residual neural networks and graph neural networks, respectively. These two methods use similar features extracted from protein models but different architectures of neural networks to predict the local accuracies of single models. MASS2 and LAW participated in the QA category of CASP14, and according to our evaluations based on CASP14 official criteria, MASS2 and LAW are the best and second-best methods based on the Z-scores of ASE/100, AUC, and ULR-1.F1. We also evaluated MASS2, LAW, and the residue-specific predicted deviations (between model and native structure) generated by AlphaFold2 on CASP14 AlphaFold2 tertiary structure (TS) models. LAW achieved comparable or better performances compared to the predicted deviations generated by AlphaFold2 on AlphaFold2 TS models, even though LAW was not trained on any AlphaFold2 TS models. Specifically, LAW performed better on AUC and ULR scores, and AlphaFold2 performed better on ASE scores. This means that AlphaFold2 is better at predicting deviations, but LAW is better at classifying accurate and inaccurate residues and detecting unreliable local regions. MASS2 and LAW can be freely accessed from http://dna.cs.miami.edu/MASS2-CASP14/ and http://dna.cs.miami.edu/LAW-CASP14/, respectively." @default.
- W4285676809 created "2022-07-17" @default.
- W4285676809 creator A5046775442 @default.
- W4285676809 creator A5052267876 @default.
- W4285676809 creator A5079060420 @default.
- W4285676809 date "2022-07-30" @default.
- W4285676809 modified "2023-09-30" @default.
- W4285676809 title "Predicting residue‐specific qualities of individual protein models using residual neural networks and graph neural networks" @default.
- W4285676809 cites W2008708467 @default.
- W4285676809 cites W2093567555 @default.
- W4285676809 cites W2096495474 @default.
- W4285676809 cites W2110483430 @default.
- W4285676809 cites W2140673705 @default.
- W4285676809 cites W2144046885 @default.
- W4285676809 cites W2147905080 @default.
- W4285676809 cites W2158714788 @default.
- W4285676809 cites W2290412022 @default.
- W4285676809 cites W2417306259 @default.
- W4285676809 cites W2514534732 @default.
- W4285676809 cites W2534288757 @default.
- W4285676809 cites W2565608178 @default.
- W4285676809 cites W2606439133 @default.
- W4285676809 cites W2807692668 @default.
- W4285676809 cites W2969735716 @default.
- W4285676809 cites W3005407385 @default.
- W4285676809 cites W3015047409 @default.
- W4285676809 cites W3039023400 @default.
- W4285676809 cites W3042567612 @default.
- W4285676809 cites W3129322014 @default.
- W4285676809 cites W3132153121 @default.
- W4285676809 cites W3177828909 @default.
- W4285676809 cites W3186243460 @default.
- W4285676809 cites W3199799076 @default.
- W4285676809 cites W4285676809 @default.
- W4285676809 doi "https://doi.org/10.1002/prot.26400" @default.
- W4285676809 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35842895" @default.
- W4285676809 hasPublicationYear "2022" @default.
- W4285676809 type Work @default.
- W4285676809 citedByCount "2" @default.
- W4285676809 countsByYear W42856768092022 @default.
- W4285676809 countsByYear W42856768092023 @default.
- W4285676809 crossrefType "journal-article" @default.
- W4285676809 hasAuthorship W4285676809A5046775442 @default.
- W4285676809 hasAuthorship W4285676809A5052267876 @default.
- W4285676809 hasAuthorship W4285676809A5079060420 @default.
- W4285676809 hasBestOaLocation W42856768091 @default.
- W4285676809 hasConcept C11413529 @default.
- W4285676809 hasConcept C119857082 @default.
- W4285676809 hasConcept C153180895 @default.
- W4285676809 hasConcept C154945302 @default.
- W4285676809 hasConcept C155512373 @default.
- W4285676809 hasConcept C159390177 @default.
- W4285676809 hasConcept C18051474 @default.
- W4285676809 hasConcept C185592680 @default.
- W4285676809 hasConcept C2606647 @default.
- W4285676809 hasConcept C39432304 @default.
- W4285676809 hasConcept C41008148 @default.
- W4285676809 hasConcept C47701112 @default.
- W4285676809 hasConcept C50644808 @default.
- W4285676809 hasConcept C55493867 @default.
- W4285676809 hasConceptScore W4285676809C11413529 @default.
- W4285676809 hasConceptScore W4285676809C119857082 @default.
- W4285676809 hasConceptScore W4285676809C153180895 @default.
- W4285676809 hasConceptScore W4285676809C154945302 @default.
- W4285676809 hasConceptScore W4285676809C155512373 @default.
- W4285676809 hasConceptScore W4285676809C159390177 @default.
- W4285676809 hasConceptScore W4285676809C18051474 @default.
- W4285676809 hasConceptScore W4285676809C185592680 @default.
- W4285676809 hasConceptScore W4285676809C2606647 @default.
- W4285676809 hasConceptScore W4285676809C39432304 @default.
- W4285676809 hasConceptScore W4285676809C41008148 @default.
- W4285676809 hasConceptScore W4285676809C47701112 @default.
- W4285676809 hasConceptScore W4285676809C50644808 @default.
- W4285676809 hasConceptScore W4285676809C55493867 @default.
- W4285676809 hasFunder F4320332161 @default.
- W4285676809 hasFunder F4320337354 @default.
- W4285676809 hasIssue "12" @default.
- W4285676809 hasLocation W42856768091 @default.
- W4285676809 hasLocation W42856768092 @default.
- W4285676809 hasLocation W42856768093 @default.
- W4285676809 hasOpenAccess W4285676809 @default.
- W4285676809 hasPrimaryLocation W42856768091 @default.
- W4285676809 hasRelatedWork W2961085424 @default.
- W4285676809 hasRelatedWork W3046775127 @default.
- W4285676809 hasRelatedWork W3094412894 @default.
- W4285676809 hasRelatedWork W3170094116 @default.
- W4285676809 hasRelatedWork W4205958290 @default.
- W4285676809 hasRelatedWork W4285260836 @default.
- W4285676809 hasRelatedWork W4286629047 @default.
- W4285676809 hasRelatedWork W4306321456 @default.
- W4285676809 hasRelatedWork W4306674287 @default.
- W4285676809 hasRelatedWork W4224009465 @default.
- W4285676809 hasVolume "90" @default.
- W4285676809 isParatext "false" @default.
- W4285676809 isRetracted "false" @default.
- W4285676809 workType "article" @default.