Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285677612> ?p ?o ?g. }
- W4285677612 endingPage "10" @default.
- W4285677612 startingPage "1" @default.
- W4285677612 abstract "Lung cancer is one of the leading causes of cancer death. Patients with early-stage lung cancer can be treated by surgery, while patients in the middle and late stages need chemotherapy or radiotherapy. Therefore, accurate staging of lung cancer is crucial for doctors to formulate accurate treatment plans for patients. In this paper, the random forest algorithm is used as the lung cancer stage prediction model, and the accuracy of lung cancer stage prediction is discussed in the microbiome, transcriptome, microbe, and transcriptome fusion groups, and the accuracy of the model is measured by indicators such as ACC, recall, and precision. The results showed that the prediction accuracy of microbial combinatorial transcriptome fusion analysis was the highest, reaching 0.809. The study reveals the role of multimodal data and fusion algorithm in accurately diagnosing lung cancer stage, which could aid doctors in clinics." @default.
- W4285677612 created "2022-07-17" @default.
- W4285677612 creator A5000285923 @default.
- W4285677612 creator A5000432967 @default.
- W4285677612 creator A5000904704 @default.
- W4285677612 creator A5056145640 @default.
- W4285677612 creator A5058539072 @default.
- W4285677612 creator A5076608158 @default.
- W4285677612 creator A5083407672 @default.
- W4285677612 date "2022-07-16" @default.
- W4285677612 modified "2023-10-18" @default.
- W4285677612 title "Lung Cancer Stage Prediction Using Multi-Omics Data" @default.
- W4285677612 cites W1569049710 @default.
- W4285677612 cites W1651586605 @default.
- W4285677612 cites W1946946982 @default.
- W4285677612 cites W1977122755 @default.
- W4285677612 cites W1979362779 @default.
- W4285677612 cites W1979538859 @default.
- W4285677612 cites W1981989535 @default.
- W4285677612 cites W1986447155 @default.
- W4285677612 cites W1987063085 @default.
- W4285677612 cites W1989367702 @default.
- W4285677612 cites W1993312546 @default.
- W4285677612 cites W1996079063 @default.
- W4285677612 cites W2000771269 @default.
- W4285677612 cites W2013891561 @default.
- W4285677612 cites W2016853666 @default.
- W4285677612 cites W2037265798 @default.
- W4285677612 cites W2040211532 @default.
- W4285677612 cites W2044545697 @default.
- W4285677612 cites W2051121270 @default.
- W4285677612 cites W2064543538 @default.
- W4285677612 cites W2070494252 @default.
- W4285677612 cites W2072881647 @default.
- W4285677612 cites W2078807175 @default.
- W4285677612 cites W2088833308 @default.
- W4285677612 cites W2089607110 @default.
- W4285677612 cites W2092077293 @default.
- W4285677612 cites W2094423596 @default.
- W4285677612 cites W2098536746 @default.
- W4285677612 cites W2111547563 @default.
- W4285677612 cites W2111731663 @default.
- W4285677612 cites W2134932622 @default.
- W4285677612 cites W2139228794 @default.
- W4285677612 cites W2145040878 @default.
- W4285677612 cites W2145416275 @default.
- W4285677612 cites W2149708359 @default.
- W4285677612 cites W2152239989 @default.
- W4285677612 cites W2164624187 @default.
- W4285677612 cites W2254642444 @default.
- W4285677612 cites W2320068077 @default.
- W4285677612 cites W2321996126 @default.
- W4285677612 cites W2612772400 @default.
- W4285677612 cites W2616962711 @default.
- W4285677612 cites W2624752195 @default.
- W4285677612 cites W2777559944 @default.
- W4285677612 cites W2792533056 @default.
- W4285677612 cites W2889646458 @default.
- W4285677612 cites W2920009718 @default.
- W4285677612 cites W2946711219 @default.
- W4285677612 cites W2950246742 @default.
- W4285677612 cites W2953089157 @default.
- W4285677612 cites W2955559288 @default.
- W4285677612 cites W2968059852 @default.
- W4285677612 cites W2979072963 @default.
- W4285677612 cites W2980754856 @default.
- W4285677612 cites W2981398951 @default.
- W4285677612 cites W3007573310 @default.
- W4285677612 cites W3012687466 @default.
- W4285677612 cites W3020324954 @default.
- W4285677612 cites W3024312732 @default.
- W4285677612 cites W3026381352 @default.
- W4285677612 cites W3026577325 @default.
- W4285677612 cites W3027226646 @default.
- W4285677612 cites W3041880399 @default.
- W4285677612 cites W3101776825 @default.
- W4285677612 cites W3133266067 @default.
- W4285677612 cites W3159209990 @default.
- W4285677612 cites W3171588964 @default.
- W4285677612 cites W3189368770 @default.
- W4285677612 cites W3189649181 @default.
- W4285677612 cites W3195716625 @default.
- W4285677612 cites W3197858765 @default.
- W4285677612 cites W4200566810 @default.
- W4285677612 cites W4206547282 @default.
- W4285677612 cites W4255502791 @default.
- W4285677612 cites W4296886862 @default.
- W4285677612 doi "https://doi.org/10.1155/2022/2279044" @default.
- W4285677612 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35880092" @default.
- W4285677612 hasPublicationYear "2022" @default.
- W4285677612 type Work @default.
- W4285677612 citedByCount "2" @default.
- W4285677612 countsByYear W42856776122022 @default.
- W4285677612 countsByYear W42856776122023 @default.
- W4285677612 crossrefType "journal-article" @default.
- W4285677612 hasAuthorship W4285677612A5000285923 @default.
- W4285677612 hasAuthorship W4285677612A5000432967 @default.
- W4285677612 hasAuthorship W4285677612A5000904704 @default.