Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285678823> ?p ?o ?g. }
- W4285678823 endingPage "108" @default.
- W4285678823 startingPage "99" @default.
- W4285678823 abstract "Diverse real world systems can be abstracted as complex networks consisting of nodes and edges as functional components. Percolation theory has shown that the failure of a few of nodes could lead to the collapse of a whole network, which brings up the network dismantling problem: How to select the least number of nodes to decompose a network into disconnected components each smaller than a predefined threshold? For its NP-hardness, many heuristic approaches have been proposed to measure and rank each node according to its importance to network structural stability. However, these measures are from a uniscale viewpoint by regarding one complex network as a flatted topology. In this article, we argue that nodes' structural importance can be measured in different scales of network topologies. Built upon recent deep learning techniques, we propose a self-supervised learning based network dismantling framework (NEES), which can hierarchically merge some compact substructures to convert a network into a coarser one with fewer nodes and edges. During the merging process, we design neural models to extract essential structures and utilize self-attention mechanisms to learn nodes' importance hierarchy in each scale. Experiments on real world networks and synthetic model networks show that the proposed NEES outperforms the state-of-the-art schemes in most cases in terms of removing the least number of target nodes to dismantle a network. The dismantling effectiveness of our neural extraction framework also highlights the emerging role of multi-scale essential structures." @default.
- W4285678823 created "2022-07-17" @default.
- W4285678823 creator A5018339079 @default.
- W4285678823 creator A5071384393 @default.
- W4285678823 date "2022-10-01" @default.
- W4285678823 modified "2023-09-25" @default.
- W4285678823 title "Neural extraction of multiscale essential structure for network dismantling" @default.
- W4285678823 cites W131619556 @default.
- W4285678823 cites W1525404729 @default.
- W4285678823 cites W1618470073 @default.
- W4285678823 cites W1823082313 @default.
- W4285678823 cites W1931400479 @default.
- W4285678823 cites W1968164782 @default.
- W4285678823 cites W1968686485 @default.
- W4285678823 cites W1970913835 @default.
- W4285678823 cites W2001263257 @default.
- W4285678823 cites W2005641459 @default.
- W4285678823 cites W2043890595 @default.
- W4285678823 cites W2056944867 @default.
- W4285678823 cites W2070207525 @default.
- W4285678823 cites W2093478505 @default.
- W4285678823 cites W2099970772 @default.
- W4285678823 cites W2133131640 @default.
- W4285678823 cites W2139708889 @default.
- W4285678823 cites W2147441165 @default.
- W4285678823 cites W2153624566 @default.
- W4285678823 cites W2186710387 @default.
- W4285678823 cites W2298724475 @default.
- W4285678823 cites W2326053725 @default.
- W4285678823 cites W2572289316 @default.
- W4285678823 cites W2782195772 @default.
- W4285678823 cites W2808409763 @default.
- W4285678823 cites W2890157847 @default.
- W4285678823 cites W2895785599 @default.
- W4285678823 cites W2963748965 @default.
- W4285678823 cites W2964414789 @default.
- W4285678823 cites W3028110392 @default.
- W4285678823 cites W3100777813 @default.
- W4285678823 cites W3103071483 @default.
- W4285678823 cites W3103657871 @default.
- W4285678823 cites W3152893301 @default.
- W4285678823 cites W3196792588 @default.
- W4285678823 cites W4210257598 @default.
- W4285678823 doi "https://doi.org/10.1016/j.neunet.2022.07.015" @default.
- W4285678823 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35872517" @default.
- W4285678823 hasPublicationYear "2022" @default.
- W4285678823 type Work @default.
- W4285678823 citedByCount "4" @default.
- W4285678823 countsByYear W42856788232023 @default.
- W4285678823 crossrefType "journal-article" @default.
- W4285678823 hasAuthorship W4285678823A5018339079 @default.
- W4285678823 hasAuthorship W4285678823A5071384393 @default.
- W4285678823 hasConcept C101142422 @default.
- W4285678823 hasConcept C114614502 @default.
- W4285678823 hasConcept C11557063 @default.
- W4285678823 hasConcept C119857082 @default.
- W4285678823 hasConcept C124101348 @default.
- W4285678823 hasConcept C136764020 @default.
- W4285678823 hasConcept C154945302 @default.
- W4285678823 hasConcept C173801870 @default.
- W4285678823 hasConcept C184720557 @default.
- W4285678823 hasConcept C197129107 @default.
- W4285678823 hasConcept C199845137 @default.
- W4285678823 hasConcept C23123220 @default.
- W4285678823 hasConcept C31258907 @default.
- W4285678823 hasConcept C33923547 @default.
- W4285678823 hasConcept C34947359 @default.
- W4285678823 hasConcept C41008148 @default.
- W4285678823 hasConcept C50644808 @default.
- W4285678823 hasConcept C64900535 @default.
- W4285678823 hasConceptScore W4285678823C101142422 @default.
- W4285678823 hasConceptScore W4285678823C114614502 @default.
- W4285678823 hasConceptScore W4285678823C11557063 @default.
- W4285678823 hasConceptScore W4285678823C119857082 @default.
- W4285678823 hasConceptScore W4285678823C124101348 @default.
- W4285678823 hasConceptScore W4285678823C136764020 @default.
- W4285678823 hasConceptScore W4285678823C154945302 @default.
- W4285678823 hasConceptScore W4285678823C173801870 @default.
- W4285678823 hasConceptScore W4285678823C184720557 @default.
- W4285678823 hasConceptScore W4285678823C197129107 @default.
- W4285678823 hasConceptScore W4285678823C199845137 @default.
- W4285678823 hasConceptScore W4285678823C23123220 @default.
- W4285678823 hasConceptScore W4285678823C31258907 @default.
- W4285678823 hasConceptScore W4285678823C33923547 @default.
- W4285678823 hasConceptScore W4285678823C34947359 @default.
- W4285678823 hasConceptScore W4285678823C41008148 @default.
- W4285678823 hasConceptScore W4285678823C50644808 @default.
- W4285678823 hasConceptScore W4285678823C64900535 @default.
- W4285678823 hasFunder F4320321001 @default.
- W4285678823 hasLocation W42856788231 @default.
- W4285678823 hasLocation W42856788232 @default.
- W4285678823 hasOpenAccess W4285678823 @default.
- W4285678823 hasPrimaryLocation W42856788231 @default.
- W4285678823 hasRelatedWork W2152091234 @default.
- W4285678823 hasRelatedWork W2368057707 @default.
- W4285678823 hasRelatedWork W2380675943 @default.
- W4285678823 hasRelatedWork W2381052246 @default.
- W4285678823 hasRelatedWork W2385595461 @default.