Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285679076> ?p ?o ?g. }
- W4285679076 endingPage "1432" @default.
- W4285679076 startingPage "1418" @default.
- W4285679076 abstract "In kidney transplant biopsies, both inflammation and chronic changes are important features that predict long-term graft survival. Quantitative scoring of these features is important for transplant diagnostics and kidney research. However, visual scoring is poorly reproducible and labor intensive. The goal of this study was to investigate the potential of convolutional neural networks (CNNs) to quantify inflammation and chronic features in kidney transplant biopsies. A structure segmentation CNN and a lymphocyte detection CNN were applied on 125 whole-slide image pairs of periodic acid-Schiff- and CD3-stained slides. The CNN results were used to quantify healthy and sclerotic glomeruli, interstitial fibrosis, tubular atrophy, and inflammation within both nonatrophic and atrophic tubuli, and in areas of interstitial fibrosis. The computed tissue features showed high correlation with Banff lesion scores of five pathologists (A.A., A.Dend., J.H.B., J.K., and T.N.). Analyses on a small subset showed a moderate correlation toward higher CD3+ cell density within scarred regions and higher CD3+ cell count inside atrophic tubuli correlated with long-term change of estimated glomerular filtration rate. The presented CNNs are valid tools to yield objective quantitative information on glomeruli number, fibrotic tissue, and inflammation within scarred and non-scarred kidney parenchyma in a reproducible manner. CNNs have the potential to improve kidney transplant diagnostics and will benefit the community as a novel method to generate surrogate end points for large-scale clinical studies." @default.
- W4285679076 created "2022-07-17" @default.
- W4285679076 creator A5002905948 @default.
- W4285679076 creator A5009905139 @default.
- W4285679076 creator A5010801490 @default.
- W4285679076 creator A5016991213 @default.
- W4285679076 creator A5020643667 @default.
- W4285679076 creator A5035747455 @default.
- W4285679076 creator A5037509355 @default.
- W4285679076 creator A5039677159 @default.
- W4285679076 creator A5048743355 @default.
- W4285679076 creator A5058183491 @default.
- W4285679076 creator A5064629255 @default.
- W4285679076 creator A5068612191 @default.
- W4285679076 creator A5068729785 @default.
- W4285679076 creator A5069396153 @default.
- W4285679076 creator A5076314803 @default.
- W4285679076 creator A5079953015 @default.
- W4285679076 date "2022-10-01" @default.
- W4285679076 modified "2023-10-13" @default.
- W4285679076 title "Convolutional Neural Networks for the Evaluation of Chronic and Inflammatory Lesions in Kidney Transplant Biopsies" @default.
- W4285679076 cites W1554208317 @default.
- W4285679076 cites W1760432558 @default.
- W4285679076 cites W1901129140 @default.
- W4285679076 cites W1973125737 @default.
- W4285679076 cites W1974986363 @default.
- W4285679076 cites W1978609778 @default.
- W4285679076 cites W19843932 @default.
- W4285679076 cites W2020992600 @default.
- W4285679076 cites W2032992413 @default.
- W4285679076 cites W2061775112 @default.
- W4285679076 cites W2089988463 @default.
- W4285679076 cites W2094113221 @default.
- W4285679076 cites W2121454052 @default.
- W4285679076 cites W2126677023 @default.
- W4285679076 cites W2128488710 @default.
- W4285679076 cites W2154818624 @default.
- W4285679076 cites W2335965531 @default.
- W4285679076 cites W2552263672 @default.
- W4285679076 cites W2592929672 @default.
- W4285679076 cites W2597342889 @default.
- W4285679076 cites W2765542710 @default.
- W4285679076 cites W2772563278 @default.
- W4285679076 cites W2772723798 @default.
- W4285679076 cites W2783839600 @default.
- W4285679076 cites W2808825376 @default.
- W4285679076 cites W2809363719 @default.
- W4285679076 cites W2810136712 @default.
- W4285679076 cites W2889232360 @default.
- W4285679076 cites W2952003460 @default.
- W4285679076 cites W2969528126 @default.
- W4285679076 cites W2969657290 @default.
- W4285679076 cites W2971487518 @default.
- W4285679076 cites W2972214324 @default.
- W4285679076 cites W2994910508 @default.
- W4285679076 cites W2995682783 @default.
- W4285679076 cites W2999091210 @default.
- W4285679076 cites W3012728984 @default.
- W4285679076 cites W3014372210 @default.
- W4285679076 cites W3015450039 @default.
- W4285679076 cites W3080446999 @default.
- W4285679076 cites W3080677331 @default.
- W4285679076 cites W3095093830 @default.
- W4285679076 cites W3098525219 @default.
- W4285679076 cites W3132601888 @default.
- W4285679076 cites W3154045578 @default.
- W4285679076 cites W3165497806 @default.
- W4285679076 cites W4294540886 @default.
- W4285679076 doi "https://doi.org/10.1016/j.ajpath.2022.06.009" @default.
- W4285679076 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35843265" @default.
- W4285679076 hasPublicationYear "2022" @default.
- W4285679076 type Work @default.
- W4285679076 citedByCount "12" @default.
- W4285679076 countsByYear W42856790762022 @default.
- W4285679076 countsByYear W42856790762023 @default.
- W4285679076 crossrefType "journal-article" @default.
- W4285679076 hasAuthorship W4285679076A5002905948 @default.
- W4285679076 hasAuthorship W4285679076A5009905139 @default.
- W4285679076 hasAuthorship W4285679076A5010801490 @default.
- W4285679076 hasAuthorship W4285679076A5016991213 @default.
- W4285679076 hasAuthorship W4285679076A5020643667 @default.
- W4285679076 hasAuthorship W4285679076A5035747455 @default.
- W4285679076 hasAuthorship W4285679076A5037509355 @default.
- W4285679076 hasAuthorship W4285679076A5039677159 @default.
- W4285679076 hasAuthorship W4285679076A5048743355 @default.
- W4285679076 hasAuthorship W4285679076A5058183491 @default.
- W4285679076 hasAuthorship W4285679076A5064629255 @default.
- W4285679076 hasAuthorship W4285679076A5068612191 @default.
- W4285679076 hasAuthorship W4285679076A5068729785 @default.
- W4285679076 hasAuthorship W4285679076A5069396153 @default.
- W4285679076 hasAuthorship W4285679076A5076314803 @default.
- W4285679076 hasAuthorship W4285679076A5079953015 @default.
- W4285679076 hasBestOaLocation W42856790761 @default.
- W4285679076 hasConcept C126322002 @default.
- W4285679076 hasConcept C142724271 @default.
- W4285679076 hasConcept C154945302 @default.
- W4285679076 hasConcept C2775934546 @default.
- W4285679076 hasConcept C2776914184 @default.