Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285684030> ?p ?o ?g. }
- W4285684030 endingPage "e38845" @default.
- W4285684030 startingPage "e38845" @default.
- W4285684030 abstract "Background Emergency department crowding continues to threaten patient safety and cause poor patient outcomes. Prior models designed to predict hospital admission have had biases. Predictive models that successfully estimate the probability of patient hospital admission would be useful in reducing or preventing emergency department “boarding” and hospital “exit block” and would reduce emergency department crowding by initiating earlier hospital admission and avoiding protracted bed procurement processes. Objective To develop a model to predict imminent adult patient hospital admission from the emergency department early in the patient visit by utilizing existing clinical descriptors (ie, patient biomarkers) that are routinely collected at triage and captured in the hospital’s electronic medical records. Biomarkers are advantageous for modeling due to their early and routine collection at triage; instantaneous availability; standardized definition, measurement, and interpretation; and their freedom from the confines of patient histories (ie, they are not affected by inaccurate patient reports on medical history, unavailable reports, or delayed report retrieval). Methods This retrospective cohort study evaluated 1 year of consecutive data events among adult patients admitted to the emergency department and developed an algorithm that predicted which patients would require imminent hospital admission. Eight predictor variables were evaluated for their roles in the outcome of the patient emergency department visit. Logistic regression was used to model the study data. Results The 8-predictor model included the following biomarkers: age, systolic blood pressure, diastolic blood pressure, heart rate, respiration rate, temperature, gender, and acuity level. The model used these biomarkers to identify emergency department patients who required hospital admission. Our model performed well, with good agreement between observed and predicted admissions, indicating a well-fitting and well-calibrated model that showed good ability to discriminate between patients who would and would not be admitted. Conclusions This prediction model based on primary data identified emergency department patients with an increased risk of hospital admission. This actionable information can be used to improve patient care and hospital operations, especially by reducing emergency department crowding by looking ahead to predict which patients are likely to be admitted following triage, thereby providing needed information to initiate the complex admission and bed assignment processes much earlier in the care continuum." @default.
- W4285684030 created "2022-07-17" @default.
- W4285684030 creator A5027181196 @default.
- W4285684030 creator A5028383956 @default.
- W4285684030 creator A5053660277 @default.
- W4285684030 date "2022-09-13" @default.
- W4285684030 modified "2023-09-30" @default.
- W4285684030 title "Reducing Crowding in Emergency Departments With Early Prediction of Hospital Admission of Adult Patients Using Biomarkers Collected at Triage: Retrospective Cohort Study" @default.
- W4285684030 cites W1453206906 @default.
- W4285684030 cites W1538085484 @default.
- W4285684030 cites W1552959945 @default.
- W4285684030 cites W1767329902 @default.
- W4285684030 cites W1934416826 @default.
- W4285684030 cites W1964490403 @default.
- W4285684030 cites W1980541833 @default.
- W4285684030 cites W1995635991 @default.
- W4285684030 cites W2001903441 @default.
- W4285684030 cites W2004290125 @default.
- W4285684030 cites W2037753834 @default.
- W4285684030 cites W2046660755 @default.
- W4285684030 cites W2053363361 @default.
- W4285684030 cites W2060268568 @default.
- W4285684030 cites W2066629156 @default.
- W4285684030 cites W2068331095 @default.
- W4285684030 cites W2070597507 @default.
- W4285684030 cites W2075715687 @default.
- W4285684030 cites W2077663753 @default.
- W4285684030 cites W2078193114 @default.
- W4285684030 cites W2086140666 @default.
- W4285684030 cites W2089630626 @default.
- W4285684030 cites W2096367109 @default.
- W4285684030 cites W2102332328 @default.
- W4285684030 cites W2105087430 @default.
- W4285684030 cites W2106852592 @default.
- W4285684030 cites W2109242212 @default.
- W4285684030 cites W2114819992 @default.
- W4285684030 cites W2114929925 @default.
- W4285684030 cites W2117162164 @default.
- W4285684030 cites W2119910794 @default.
- W4285684030 cites W2139558180 @default.
- W4285684030 cites W2146767951 @default.
- W4285684030 cites W2150164820 @default.
- W4285684030 cites W2153456496 @default.
- W4285684030 cites W2154723371 @default.
- W4285684030 cites W2154901533 @default.
- W4285684030 cites W2160235474 @default.
- W4285684030 cites W2162260489 @default.
- W4285684030 cites W2164529528 @default.
- W4285684030 cites W2215181414 @default.
- W4285684030 cites W2216030178 @default.
- W4285684030 cites W2217589360 @default.
- W4285684030 cites W2289880281 @default.
- W4285684030 cites W2315742082 @default.
- W4285684030 cites W2329958142 @default.
- W4285684030 cites W2435837565 @default.
- W4285684030 cites W2517846108 @default.
- W4285684030 cites W2537633980 @default.
- W4285684030 cites W2542227070 @default.
- W4285684030 cites W2548708111 @default.
- W4285684030 cites W2549728100 @default.
- W4285684030 cites W2623899290 @default.
- W4285684030 cites W2748232622 @default.
- W4285684030 cites W2759907920 @default.
- W4285684030 cites W2771053200 @default.
- W4285684030 cites W2783409648 @default.
- W4285684030 cites W2794791463 @default.
- W4285684030 cites W2796424707 @default.
- W4285684030 cites W2807374997 @default.
- W4285684030 cites W2883843102 @default.
- W4285684030 cites W2898892062 @default.
- W4285684030 cites W2912204848 @default.
- W4285684030 cites W2952904808 @default.
- W4285684030 cites W2973036769 @default.
- W4285684030 cites W2978297156 @default.
- W4285684030 cites W2981898544 @default.
- W4285684030 cites W3001070391 @default.
- W4285684030 cites W3012059038 @default.
- W4285684030 cites W3012618661 @default.
- W4285684030 cites W3176014506 @default.
- W4285684030 cites W3200427308 @default.
- W4285684030 cites W4239463710 @default.
- W4285684030 doi "https://doi.org/10.2196/38845" @default.
- W4285684030 hasPublicationYear "2022" @default.
- W4285684030 type Work @default.
- W4285684030 citedByCount "1" @default.
- W4285684030 countsByYear W42856840302023 @default.
- W4285684030 crossrefType "journal-article" @default.
- W4285684030 hasAuthorship W4285684030A5027181196 @default.
- W4285684030 hasAuthorship W4285684030A5028383956 @default.
- W4285684030 hasAuthorship W4285684030A5053660277 @default.
- W4285684030 hasBestOaLocation W42856840301 @default.
- W4285684030 hasConcept C118552586 @default.
- W4285684030 hasConcept C126322002 @default.
- W4285684030 hasConcept C149333683 @default.
- W4285684030 hasConcept C151956035 @default.
- W4285684030 hasConcept C167135981 @default.
- W4285684030 hasConcept C169760540 @default.
- W4285684030 hasConcept C194828623 @default.