Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285684920> ?p ?o ?g. }
- W4285684920 endingPage "13" @default.
- W4285684920 startingPage "1" @default.
- W4285684920 abstract "Computer science plays an important role in modern dynamic health systems. Given the collaborative nature of the diagnostic process, computer technology provides important services to healthcare professionals and organizations, as well as to patients and their families, researchers, and decision-makers. Thus, any innovations that improve the diagnostic process while maintaining quality and safety are crucial to the development of the healthcare field. Many diseases can be tentatively diagnosed during their initial stages. In this study, all developed techniques were applied to tuberculosis (TB). Thus, we propose an optimized machine learning-based model that extracts optimal texture features from TB-related images and selects the hyper-parameters of the classifiers. Increasing the accuracy rate and minimizing the number of characteristics extracted are our goals. In other words, this is a multitask optimization issue. A genetic algorithm (GA) is used to choose the best features, which are then fed into a support vector machine (SVM) classifier. Using the ImageCLEF 2020 data set, we conducted experiments using the proposed approach and achieved significantly higher accuracy and better outcomes in comparison with the state-of-the-art works. The obtained experimental results highlight the efficiency of modified SVM classifier compared with other standard ones." @default.
- W4285684920 created "2022-07-17" @default.
- W4285684920 creator A5003008708 @default.
- W4285684920 creator A5004970162 @default.
- W4285684920 creator A5006961615 @default.
- W4285684920 creator A5057488732 @default.
- W4285684920 creator A5073408697 @default.
- W4285684920 creator A5075789222 @default.
- W4285684920 creator A5085199077 @default.
- W4285684920 creator A5087436950 @default.
- W4285684920 date "2022-03-21" @default.
- W4285684920 modified "2023-10-14" @default.
- W4285684920 title "Tuberculosis Disease Diagnosis Based on an Optimized Machine Learning Model" @default.
- W4285684920 cites W1530699444 @default.
- W4285684920 cites W1563755836 @default.
- W4285684920 cites W1930624869 @default.
- W4285684920 cites W1965475047 @default.
- W4285684920 cites W1970361289 @default.
- W4285684920 cites W2014790949 @default.
- W4285684920 cites W2044081664 @default.
- W4285684920 cites W2044465660 @default.
- W4285684920 cites W2059862641 @default.
- W4285684920 cites W2143426320 @default.
- W4285684920 cites W2168321673 @default.
- W4285684920 cites W2221258179 @default.
- W4285684920 cites W2310042802 @default.
- W4285684920 cites W2327422911 @default.
- W4285684920 cites W2425023303 @default.
- W4285684920 cites W2460944579 @default.
- W4285684920 cites W2476882019 @default.
- W4285684920 cites W2520384903 @default.
- W4285684920 cites W2546696880 @default.
- W4285684920 cites W2550576290 @default.
- W4285684920 cites W2739220786 @default.
- W4285684920 cites W2790525265 @default.
- W4285684920 cites W2883788350 @default.
- W4285684920 cites W2887061978 @default.
- W4285684920 cites W2896500638 @default.
- W4285684920 cites W2928251064 @default.
- W4285684920 cites W2957815673 @default.
- W4285684920 cites W2963480753 @default.
- W4285684920 cites W2990171020 @default.
- W4285684920 cites W3003291523 @default.
- W4285684920 cites W3013262845 @default.
- W4285684920 cites W3039728372 @default.
- W4285684920 cites W3108148703 @default.
- W4285684920 cites W3120261517 @default.
- W4285684920 cites W3130901524 @default.
- W4285684920 cites W3132455321 @default.
- W4285684920 cites W3134446428 @default.
- W4285684920 cites W3156638091 @default.
- W4285684920 cites W3197432140 @default.
- W4285684920 cites W3210797426 @default.
- W4285684920 cites W3217540330 @default.
- W4285684920 cites W4200048628 @default.
- W4285684920 cites W4213314969 @default.
- W4285684920 cites W4233223481 @default.
- W4285684920 cites W94368583 @default.
- W4285684920 cites W2321402710 @default.
- W4285684920 doi "https://doi.org/10.1155/2022/8950243" @default.
- W4285684920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35494520" @default.
- W4285684920 hasPublicationYear "2022" @default.
- W4285684920 type Work @default.
- W4285684920 citedByCount "19" @default.
- W4285684920 countsByYear W42856849202022 @default.
- W4285684920 countsByYear W42856849202023 @default.
- W4285684920 crossrefType "journal-article" @default.
- W4285684920 hasAuthorship W4285684920A5003008708 @default.
- W4285684920 hasAuthorship W4285684920A5004970162 @default.
- W4285684920 hasAuthorship W4285684920A5006961615 @default.
- W4285684920 hasAuthorship W4285684920A5057488732 @default.
- W4285684920 hasAuthorship W4285684920A5073408697 @default.
- W4285684920 hasAuthorship W4285684920A5075789222 @default.
- W4285684920 hasAuthorship W4285684920A5085199077 @default.
- W4285684920 hasAuthorship W4285684920A5087436950 @default.
- W4285684920 hasBestOaLocation W42856849201 @default.
- W4285684920 hasConcept C119857082 @default.
- W4285684920 hasConcept C12267149 @default.
- W4285684920 hasConcept C124101348 @default.
- W4285684920 hasConcept C154945302 @default.
- W4285684920 hasConcept C160735492 @default.
- W4285684920 hasConcept C162324750 @default.
- W4285684920 hasConcept C202444582 @default.
- W4285684920 hasConcept C33923547 @default.
- W4285684920 hasConcept C41008148 @default.
- W4285684920 hasConcept C50522688 @default.
- W4285684920 hasConcept C8880873 @default.
- W4285684920 hasConcept C95623464 @default.
- W4285684920 hasConcept C9652623 @default.
- W4285684920 hasConceptScore W4285684920C119857082 @default.
- W4285684920 hasConceptScore W4285684920C12267149 @default.
- W4285684920 hasConceptScore W4285684920C124101348 @default.
- W4285684920 hasConceptScore W4285684920C154945302 @default.
- W4285684920 hasConceptScore W4285684920C160735492 @default.
- W4285684920 hasConceptScore W4285684920C162324750 @default.
- W4285684920 hasConceptScore W4285684920C202444582 @default.
- W4285684920 hasConceptScore W4285684920C33923547 @default.
- W4285684920 hasConceptScore W4285684920C41008148 @default.