Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285702233> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4285702233 abstract "Simultaneous measurements, such as the combination of particle image velocimetry (PIV) for velocity fields with planar laser induced fluorescence (PLIF) for species fields, are widely used in experimental turbulent combustion applications for the analysis of a plethora of complex physical processes. Such physical analyses are driven by the interpretation of spatial correlations between these fields by the experimenter. However, these correlations also imply some amount of intrinsic redundancy; the simultaneous fields contain overlapping information content. The goal of this work lies in the quantitative extraction of this overlapping information content in simultaneous field measurements. Specifically, the amount of PIV information contained in simultaneously measured OH-PLIF fields in the domain of a swirl-stabilized combustor is sought. This task is accomplished using machine learning techniques based on artificial neural networks designed to optimize PLIF-to-PIV mappings. It was found that most of the velocity information content could be retrieved when considering linear combinations of neighborhoods of OH-PLIF signal spanning roughly two integral lengthscales (half of the considered domain), and that PLIF signal interactions contained in smaller, local regions (less than half of the domain) contained no PIV information. Further, by visualizing the coherent structures contained within the neural network parameters, the role of multi-scale interactions related to velocity field retrieval from the OH-PLIF signal became more apparent. Overall, this study reveals a useful pathway (in the form of overlapping information content extraction) to develop diagnostic tools that capture more information using the same experimental resources by minimizing redundancy." @default.
- W4285702233 created "2022-07-18" @default.
- W4285702233 creator A5036513384 @default.
- W4285702233 creator A5071906834 @default.
- W4285702233 creator A5075869229 @default.
- W4285702233 date "2020-03-07" @default.
- W4285702233 modified "2023-10-14" @default.
- W4285702233 title "Extracting Information Overlap in Simultaneous OH-PLIF and PIV Fields with Neural Networks" @default.
- W4285702233 doi "https://doi.org/10.48550/arxiv.2003.03662" @default.
- W4285702233 hasPublicationYear "2020" @default.
- W4285702233 type Work @default.
- W4285702233 citedByCount "0" @default.
- W4285702233 crossrefType "posted-content" @default.
- W4285702233 hasAuthorship W4285702233A5036513384 @default.
- W4285702233 hasAuthorship W4285702233A5071906834 @default.
- W4285702233 hasAuthorship W4285702233A5075869229 @default.
- W4285702233 hasBestOaLocation W42857022331 @default.
- W4285702233 hasConcept C111919701 @default.
- W4285702233 hasConcept C11413529 @default.
- W4285702233 hasConcept C120665830 @default.
- W4285702233 hasConcept C121332964 @default.
- W4285702233 hasConcept C1342733 @default.
- W4285702233 hasConcept C134306372 @default.
- W4285702233 hasConcept C152124472 @default.
- W4285702233 hasConcept C153180895 @default.
- W4285702233 hasConcept C154945302 @default.
- W4285702233 hasConcept C186060115 @default.
- W4285702233 hasConcept C196558001 @default.
- W4285702233 hasConcept C199360897 @default.
- W4285702233 hasConcept C207857233 @default.
- W4285702233 hasConcept C2778152352 @default.
- W4285702233 hasConcept C2779843651 @default.
- W4285702233 hasConcept C33923547 @default.
- W4285702233 hasConcept C41008148 @default.
- W4285702233 hasConcept C50644808 @default.
- W4285702233 hasConcept C520434653 @default.
- W4285702233 hasConcept C57879066 @default.
- W4285702233 hasConcept C77433292 @default.
- W4285702233 hasConcept C86803240 @default.
- W4285702233 hasConcept C91188154 @default.
- W4285702233 hasConceptScore W4285702233C111919701 @default.
- W4285702233 hasConceptScore W4285702233C11413529 @default.
- W4285702233 hasConceptScore W4285702233C120665830 @default.
- W4285702233 hasConceptScore W4285702233C121332964 @default.
- W4285702233 hasConceptScore W4285702233C1342733 @default.
- W4285702233 hasConceptScore W4285702233C134306372 @default.
- W4285702233 hasConceptScore W4285702233C152124472 @default.
- W4285702233 hasConceptScore W4285702233C153180895 @default.
- W4285702233 hasConceptScore W4285702233C154945302 @default.
- W4285702233 hasConceptScore W4285702233C186060115 @default.
- W4285702233 hasConceptScore W4285702233C196558001 @default.
- W4285702233 hasConceptScore W4285702233C199360897 @default.
- W4285702233 hasConceptScore W4285702233C207857233 @default.
- W4285702233 hasConceptScore W4285702233C2778152352 @default.
- W4285702233 hasConceptScore W4285702233C2779843651 @default.
- W4285702233 hasConceptScore W4285702233C33923547 @default.
- W4285702233 hasConceptScore W4285702233C41008148 @default.
- W4285702233 hasConceptScore W4285702233C50644808 @default.
- W4285702233 hasConceptScore W4285702233C520434653 @default.
- W4285702233 hasConceptScore W4285702233C57879066 @default.
- W4285702233 hasConceptScore W4285702233C77433292 @default.
- W4285702233 hasConceptScore W4285702233C86803240 @default.
- W4285702233 hasConceptScore W4285702233C91188154 @default.
- W4285702233 hasLocation W42857022331 @default.
- W4285702233 hasOpenAccess W4285702233 @default.
- W4285702233 hasPrimaryLocation W42857022331 @default.
- W4285702233 hasRelatedWork W1530338814 @default.
- W4285702233 hasRelatedWork W1614854117 @default.
- W4285702233 hasRelatedWork W1987697639 @default.
- W4285702233 hasRelatedWork W2000376063 @default.
- W4285702233 hasRelatedWork W2065286947 @default.
- W4285702233 hasRelatedWork W2097608382 @default.
- W4285702233 hasRelatedWork W2128610284 @default.
- W4285702233 hasRelatedWork W2612004735 @default.
- W4285702233 hasRelatedWork W3009699607 @default.
- W4285702233 hasRelatedWork W3201824475 @default.
- W4285702233 isParatext "false" @default.
- W4285702233 isRetracted "false" @default.
- W4285702233 workType "article" @default.