Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285708276> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4285708276 abstract "The genetic etiologies of common diseases are highly complex and heterogeneous. Classic statistical methods, such as linear regression, have successfully identified numerous genetic variants associated with complex diseases. Nonetheless, for most complex diseases, the identified variants only account for a small proportion of heritability. Challenges remain to discover additional variants contributing to complex diseases. Expectile regression is a generalization of linear regression and provides completed information on the conditional distribution of a phenotype of interest. While expectile regression has many nice properties and holds great promise for genetic data analyses (e.g., investigating genetic variants predisposing to a high-risk population), it has been rarely used in genetic research. In this paper, we develop an expectile neural network (ENN) method for genetic data analyses of complex diseases. Similar to expectile regression, ENN provides a comprehensive view of relationships between genetic variants and disease phenotypes and can be used to discover genetic variants predisposing to sub-populations (e.g., high-risk groups). We further integrate the idea of neural networks into ENN, making it capable of capturing non-linear and non-additive genetic effects (e.g., gene-gene interactions). Through simulations, we showed that the proposed method outperformed an existing expectile regression when there exist complex relationships between genetic variants and disease phenotypes. We also applied the proposed method to the genetic data from the Study of Addiction: Genetics and Environment(SAGE), investigating the relationships of candidate genes with smoking quantity." @default.
- W4285708276 created "2022-07-18" @default.
- W4285708276 creator A5012777958 @default.
- W4285708276 creator A5040005803 @default.
- W4285708276 creator A5041755127 @default.
- W4285708276 creator A5076626946 @default.
- W4285708276 date "2020-10-26" @default.
- W4285708276 modified "2023-09-26" @default.
- W4285708276 title "Expectile Neural Networks for Genetic Data Analysis of Complex Diseases" @default.
- W4285708276 doi "https://doi.org/10.48550/arxiv.2010.13898" @default.
- W4285708276 hasPublicationYear "2020" @default.
- W4285708276 type Work @default.
- W4285708276 citedByCount "0" @default.
- W4285708276 crossrefType "posted-content" @default.
- W4285708276 hasAuthorship W4285708276A5012777958 @default.
- W4285708276 hasAuthorship W4285708276A5040005803 @default.
- W4285708276 hasAuthorship W4285708276A5041755127 @default.
- W4285708276 hasAuthorship W4285708276A5076626946 @default.
- W4285708276 hasBestOaLocation W42857082761 @default.
- W4285708276 hasConcept C104317684 @default.
- W4285708276 hasConcept C105795698 @default.
- W4285708276 hasConcept C134306372 @default.
- W4285708276 hasConcept C135763542 @default.
- W4285708276 hasConcept C142724271 @default.
- W4285708276 hasConcept C144621757 @default.
- W4285708276 hasConcept C153209595 @default.
- W4285708276 hasConcept C161890455 @default.
- W4285708276 hasConcept C177148314 @default.
- W4285708276 hasConcept C186413461 @default.
- W4285708276 hasConcept C2779134260 @default.
- W4285708276 hasConcept C2908647359 @default.
- W4285708276 hasConcept C2993967602 @default.
- W4285708276 hasConcept C33923547 @default.
- W4285708276 hasConcept C54355233 @default.
- W4285708276 hasConcept C70721500 @default.
- W4285708276 hasConcept C71924100 @default.
- W4285708276 hasConcept C83546350 @default.
- W4285708276 hasConcept C86803240 @default.
- W4285708276 hasConcept C99454951 @default.
- W4285708276 hasConceptScore W4285708276C104317684 @default.
- W4285708276 hasConceptScore W4285708276C105795698 @default.
- W4285708276 hasConceptScore W4285708276C134306372 @default.
- W4285708276 hasConceptScore W4285708276C135763542 @default.
- W4285708276 hasConceptScore W4285708276C142724271 @default.
- W4285708276 hasConceptScore W4285708276C144621757 @default.
- W4285708276 hasConceptScore W4285708276C153209595 @default.
- W4285708276 hasConceptScore W4285708276C161890455 @default.
- W4285708276 hasConceptScore W4285708276C177148314 @default.
- W4285708276 hasConceptScore W4285708276C186413461 @default.
- W4285708276 hasConceptScore W4285708276C2779134260 @default.
- W4285708276 hasConceptScore W4285708276C2908647359 @default.
- W4285708276 hasConceptScore W4285708276C2993967602 @default.
- W4285708276 hasConceptScore W4285708276C33923547 @default.
- W4285708276 hasConceptScore W4285708276C54355233 @default.
- W4285708276 hasConceptScore W4285708276C70721500 @default.
- W4285708276 hasConceptScore W4285708276C71924100 @default.
- W4285708276 hasConceptScore W4285708276C83546350 @default.
- W4285708276 hasConceptScore W4285708276C86803240 @default.
- W4285708276 hasConceptScore W4285708276C99454951 @default.
- W4285708276 hasLocation W42857082761 @default.
- W4285708276 hasOpenAccess W4285708276 @default.
- W4285708276 hasPrimaryLocation W42857082761 @default.
- W4285708276 hasRelatedWork W1577567365 @default.
- W4285708276 hasRelatedWork W1973845055 @default.
- W4285708276 hasRelatedWork W2004156733 @default.
- W4285708276 hasRelatedWork W2007283913 @default.
- W4285708276 hasRelatedWork W2013274313 @default.
- W4285708276 hasRelatedWork W2028197440 @default.
- W4285708276 hasRelatedWork W2060875624 @default.
- W4285708276 hasRelatedWork W2136285728 @default.
- W4285708276 hasRelatedWork W3041333267 @default.
- W4285708276 hasRelatedWork W4223921400 @default.
- W4285708276 isParatext "false" @default.
- W4285708276 isRetracted "false" @default.
- W4285708276 workType "article" @default.