Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285740924> ?p ?o ?g. }
- W4285740924 abstract "Abstract Nowadays, firms are constantly looking for methodological approaches that help them to decrease the time needed for the innovation process. Among these approaches, it is worth mentioning the TRIZ-based frameworks such as the Inventive Design Methodology (IDM), where the Problem Graph method is used to formulate a problem. However, the application of IDM is time-consuming due to the construction of a complete map to clarify a problem situation. Therefore, the Inverse Problem Graph (IPG) method has been introduced within the IDM framework to enhance its agility. Nevertheless, the manual gathering of essential information, including parameters and concepts, requires effort and time. This paper integrates the neural network doc2vec and machine learning algorithms as Artificial Intelligence methods into a graphical method inspired by the IPG process. This integration can facilitate and accelerate the development of inventive solutions by extracting parameters and concepts in the inventive design process. The method has been applied to develop a new lattice structure solution in the material field." @default.
- W4285740924 created "2022-07-18" @default.
- W4285740924 creator A5026220468 @default.
- W4285740924 creator A5035808021 @default.
- W4285740924 creator A5077602207 @default.
- W4285740924 creator A5078897628 @default.
- W4285740924 creator A5084241443 @default.
- W4285740924 date "2022-01-01" @default.
- W4285740924 modified "2023-09-30" @default.
- W4285740924 title "Artificial intelligence methods for improving the inventive design process, application in lattice structure case study" @default.
- W4285740924 cites W2020224136 @default.
- W4285740924 cites W2039741433 @default.
- W4285740924 cites W2041041006 @default.
- W4285740924 cites W2088921456 @default.
- W4285740924 cites W2128065064 @default.
- W4285740924 cites W2142149595 @default.
- W4285740924 cites W2156909104 @default.
- W4285740924 cites W2216326501 @default.
- W4285740924 cites W2284418194 @default.
- W4285740924 cites W2295797531 @default.
- W4285740924 cites W2314677702 @default.
- W4285740924 cites W2321278764 @default.
- W4285740924 cites W2472640291 @default.
- W4285740924 cites W2597485909 @default.
- W4285740924 cites W2605690256 @default.
- W4285740924 cites W2618694545 @default.
- W4285740924 cites W2738866524 @default.
- W4285740924 cites W2739450795 @default.
- W4285740924 cites W2750402403 @default.
- W4285740924 cites W2753683282 @default.
- W4285740924 cites W2772387500 @default.
- W4285740924 cites W2780266336 @default.
- W4285740924 cites W2792580592 @default.
- W4285740924 cites W2801079472 @default.
- W4285740924 cites W2802313088 @default.
- W4285740924 cites W2808896609 @default.
- W4285740924 cites W2894170875 @default.
- W4285740924 cites W2894660032 @default.
- W4285740924 cites W2895230446 @default.
- W4285740924 cites W2903504742 @default.
- W4285740924 cites W2903746137 @default.
- W4285740924 cites W2919466488 @default.
- W4285740924 cites W2923266052 @default.
- W4285740924 cites W2955959507 @default.
- W4285740924 cites W2977379775 @default.
- W4285740924 cites W2979023429 @default.
- W4285740924 cites W2988276567 @default.
- W4285740924 cites W3002286831 @default.
- W4285740924 cites W3007885714 @default.
- W4285740924 cites W3038282723 @default.
- W4285740924 cites W3092520250 @default.
- W4285740924 cites W3105625590 @default.
- W4285740924 cites W3107999451 @default.
- W4285740924 cites W3123914451 @default.
- W4285740924 cites W3140630923 @default.
- W4285740924 cites W3165269652 @default.
- W4285740924 cites W3192935749 @default.
- W4285740924 cites W3217332619 @default.
- W4285740924 cites W4206652998 @default.
- W4285740924 cites W4244529562 @default.
- W4285740924 cites W4323966453 @default.
- W4285740924 cites W2549152432 @default.
- W4285740924 cites W2945377946 @default.
- W4285740924 doi "https://doi.org/10.1017/s0890060422000051" @default.
- W4285740924 hasPublicationYear "2022" @default.
- W4285740924 type Work @default.
- W4285740924 citedByCount "1" @default.
- W4285740924 countsByYear W42857409242022 @default.
- W4285740924 crossrefType "journal-article" @default.
- W4285740924 hasAuthorship W4285740924A5026220468 @default.
- W4285740924 hasAuthorship W4285740924A5035808021 @default.
- W4285740924 hasAuthorship W4285740924A5077602207 @default.
- W4285740924 hasAuthorship W4285740924A5078897628 @default.
- W4285740924 hasAuthorship W4285740924A5084241443 @default.
- W4285740924 hasConcept C111919701 @default.
- W4285740924 hasConcept C119857082 @default.
- W4285740924 hasConcept C127413603 @default.
- W4285740924 hasConcept C132525143 @default.
- W4285740924 hasConcept C13736549 @default.
- W4285740924 hasConcept C154945302 @default.
- W4285740924 hasConcept C202444582 @default.
- W4285740924 hasConcept C2778800418 @default.
- W4285740924 hasConcept C33923547 @default.
- W4285740924 hasConcept C41008148 @default.
- W4285740924 hasConcept C50644808 @default.
- W4285740924 hasConcept C80444323 @default.
- W4285740924 hasConcept C9652623 @default.
- W4285740924 hasConcept C98045186 @default.
- W4285740924 hasConceptScore W4285740924C111919701 @default.
- W4285740924 hasConceptScore W4285740924C119857082 @default.
- W4285740924 hasConceptScore W4285740924C127413603 @default.
- W4285740924 hasConceptScore W4285740924C132525143 @default.
- W4285740924 hasConceptScore W4285740924C13736549 @default.
- W4285740924 hasConceptScore W4285740924C154945302 @default.
- W4285740924 hasConceptScore W4285740924C202444582 @default.
- W4285740924 hasConceptScore W4285740924C2778800418 @default.
- W4285740924 hasConceptScore W4285740924C33923547 @default.
- W4285740924 hasConceptScore W4285740924C41008148 @default.
- W4285740924 hasConceptScore W4285740924C50644808 @default.
- W4285740924 hasConceptScore W4285740924C80444323 @default.