Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285742194> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4285742194 endingPage "102" @default.
- W4285742194 startingPage "83" @default.
- W4285742194 abstract "In recent years, with numerous developments of convolutional neural network (CNN) classification models for medical diagnosis, the issue of misrecognition/misclassification has become more and more important. Thus, research on misrecognition/misclassification has been progressing. This study focuses on the problem of misrecognition/misclassification of CNN classification models for coronavirus disease (COVID-19) using chest X-ray images. We construct two models for COVID-19 pneumonia classification by fine-tuning ResNet-50 architecture, i.e., a model retrained with full-sized original images and a model retrained with segmented images. The present study demonstrates the uncertainty (misrecognition/misclassification) of model performance caused by the discrepancy in the shapes of images at the phase of model construction and that of clinical applications. To achieve it, we apply three XAI methods to demonstrate and explain the uncertainty of classification results obtained from the two constructed models assuming for clinical applications. Experimental results indicate that the performance of classification models cannot be maintained when the type of constructed model and the geometric shape of input images are not matched, which may bring about misrecognition in clinical applications. We also notice that the effect of adversarial attack might be induced if the method of image segmentation is not performed properly. The results suggest that the best approach to obtaining a highly reliable prediction in the classification of COVID-19 pneumonia is to construct a model using full-sized original images as training data and use full-sized original images as the input when utilized in clinical applications." @default.
- W4285742194 created "2022-07-18" @default.
- W4285742194 creator A5022430625 @default.
- W4285742194 creator A5045283661 @default.
- W4285742194 creator A5051569420 @default.
- W4285742194 date "2022-01-01" @default.
- W4285742194 modified "2023-10-15" @default.
- W4285742194 title "Explainable Analysis of Deep Learning Models for Coronavirus Disease (COVID-19) Classification with Chest X-Ray Images: Towards Practical Applications" @default.
- W4285742194 cites W1997458394 @default.
- W4285742194 cites W2136270600 @default.
- W4285742194 cites W2194775991 @default.
- W4285742194 cites W2282821441 @default.
- W4285742194 cites W2745565856 @default.
- W4285742194 cites W2811374795 @default.
- W4285742194 cites W2884830895 @default.
- W4285742194 cites W2962772482 @default.
- W4285742194 cites W2962858109 @default.
- W4285742194 cites W3005451155 @default.
- W4285742194 cites W3009603904 @default.
- W4285742194 cites W3012211282 @default.
- W4285742194 cites W3023402713 @default.
- W4285742194 cites W3088680016 @default.
- W4285742194 cites W3105081694 @default.
- W4285742194 cites W3160199995 @default.
- W4285742194 cites W3185346444 @default.
- W4285742194 doi "https://doi.org/10.4236/ojmi.2022.123009" @default.
- W4285742194 hasPublicationYear "2022" @default.
- W4285742194 type Work @default.
- W4285742194 citedByCount "4" @default.
- W4285742194 countsByYear W42857421942022 @default.
- W4285742194 countsByYear W42857421942023 @default.
- W4285742194 crossrefType "journal-article" @default.
- W4285742194 hasAuthorship W4285742194A5022430625 @default.
- W4285742194 hasAuthorship W4285742194A5045283661 @default.
- W4285742194 hasAuthorship W4285742194A5051569420 @default.
- W4285742194 hasBestOaLocation W42857421941 @default.
- W4285742194 hasConcept C108583219 @default.
- W4285742194 hasConcept C115961682 @default.
- W4285742194 hasConcept C119857082 @default.
- W4285742194 hasConcept C142724271 @default.
- W4285742194 hasConcept C153180895 @default.
- W4285742194 hasConcept C154945302 @default.
- W4285742194 hasConcept C199360897 @default.
- W4285742194 hasConcept C2779134260 @default.
- W4285742194 hasConcept C2780801425 @default.
- W4285742194 hasConcept C3008058167 @default.
- W4285742194 hasConcept C41008148 @default.
- W4285742194 hasConcept C524204448 @default.
- W4285742194 hasConcept C71924100 @default.
- W4285742194 hasConcept C75294576 @default.
- W4285742194 hasConcept C81363708 @default.
- W4285742194 hasConcept C89600930 @default.
- W4285742194 hasConceptScore W4285742194C108583219 @default.
- W4285742194 hasConceptScore W4285742194C115961682 @default.
- W4285742194 hasConceptScore W4285742194C119857082 @default.
- W4285742194 hasConceptScore W4285742194C142724271 @default.
- W4285742194 hasConceptScore W4285742194C153180895 @default.
- W4285742194 hasConceptScore W4285742194C154945302 @default.
- W4285742194 hasConceptScore W4285742194C199360897 @default.
- W4285742194 hasConceptScore W4285742194C2779134260 @default.
- W4285742194 hasConceptScore W4285742194C2780801425 @default.
- W4285742194 hasConceptScore W4285742194C3008058167 @default.
- W4285742194 hasConceptScore W4285742194C41008148 @default.
- W4285742194 hasConceptScore W4285742194C524204448 @default.
- W4285742194 hasConceptScore W4285742194C71924100 @default.
- W4285742194 hasConceptScore W4285742194C75294576 @default.
- W4285742194 hasConceptScore W4285742194C81363708 @default.
- W4285742194 hasConceptScore W4285742194C89600930 @default.
- W4285742194 hasIssue "03" @default.
- W4285742194 hasLocation W42857421941 @default.
- W4285742194 hasOpenAccess W4285742194 @default.
- W4285742194 hasPrimaryLocation W42857421941 @default.
- W4285742194 hasRelatedWork W2470368200 @default.
- W4285742194 hasRelatedWork W2766604260 @default.
- W4285742194 hasRelatedWork W2912288872 @default.
- W4285742194 hasRelatedWork W2986507176 @default.
- W4285742194 hasRelatedWork W2996856019 @default.
- W4285742194 hasRelatedWork W3018421652 @default.
- W4285742194 hasRelatedWork W3160224718 @default.
- W4285742194 hasRelatedWork W3160711233 @default.
- W4285742194 hasRelatedWork W4220996320 @default.
- W4285742194 hasRelatedWork W4281780675 @default.
- W4285742194 hasVolume "12" @default.
- W4285742194 isParatext "false" @default.
- W4285742194 isRetracted "false" @default.
- W4285742194 workType "article" @default.