Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285742357> ?p ?o ?g. }
- W4285742357 endingPage "150" @default.
- W4285742357 startingPage "121" @default.
- W4285742357 abstract "An increase in life expectancy is leading to an aging society, where gradual degradation in physical/cognitive health could result in fall injuries, cardiovascular, neurological/psychological problems, or a sedentary lifestyle. Sensor-based human activity recognition (HAR) is found to be a potential assistive technology in this context to improve the quality of life of an aging society. This chapter presents the state of the art and future trends of Internet of Things (IoT)-enabled sensor data-based Human Activity Recognition (HAR) systems, where machine learning (ML)/deep learning (DL) is used to classify human actions in the context of healthcare applications. In particular, the impact of IoT on the healthcare industry is so immense that a dedicated specialization, termed as Internet of Healthcare Things (IoHT), has emerged. Smart healthcare systems are equipped with different categories of sensors (wearable, wireless, and ambient). The huge amount of sensor data acquired by IoHT sensors allows for performing accurate HAR. The HAR involves detection/classification problems, e.g. fall detection and seizer detection, where ML is used extensively, at its heart. A lot of ML/DL techniques are being used in HAR including support vector machine (SVM), artificial neural network (ANN), recurrent neural network (RNN), convolutional neural network (CNN), deep neural network (DNN), long short-term memory (LSTM), etc. However, there are a few special aspects of HAR sensor data that make it difficult to handle. Involved research is still being pursued across the globe to solve these problems." @default.
- W4285742357 created "2022-07-18" @default.
- W4285742357 creator A5037941914 @default.
- W4285742357 creator A5057025838 @default.
- W4285742357 date "2022-01-01" @default.
- W4285742357 modified "2023-09-24" @default.
- W4285742357 title "Human Activity Recognition Systems Based on Sensor Data Using Machine Learning" @default.
- W4285742357 cites W1654139916 @default.
- W4285742357 cites W2023302299 @default.
- W4285742357 cites W2054780155 @default.
- W4285742357 cites W2071901544 @default.
- W4285742357 cites W2092340766 @default.
- W4285742357 cites W2093323495 @default.
- W4285742357 cites W2144994235 @default.
- W4285742357 cites W2145784365 @default.
- W4285742357 cites W2156948680 @default.
- W4285742357 cites W2178873284 @default.
- W4285742357 cites W2295124130 @default.
- W4285742357 cites W2296193698 @default.
- W4285742357 cites W2314110811 @default.
- W4285742357 cites W2322989609 @default.
- W4285742357 cites W2340862004 @default.
- W4285742357 cites W2563686712 @default.
- W4285742357 cites W2593796416 @default.
- W4285742357 cites W2595353251 @default.
- W4285742357 cites W2623595444 @default.
- W4285742357 cites W2736009068 @default.
- W4285742357 cites W2736191430 @default.
- W4285742357 cites W2750918592 @default.
- W4285742357 cites W2765171540 @default.
- W4285742357 cites W2770265759 @default.
- W4285742357 cites W2775347070 @default.
- W4285742357 cites W2782354506 @default.
- W4285742357 cites W2789436454 @default.
- W4285742357 cites W2792568160 @default.
- W4285742357 cites W2793546538 @default.
- W4285742357 cites W2796567768 @default.
- W4285742357 cites W2796919335 @default.
- W4285742357 cites W2800153240 @default.
- W4285742357 cites W2802717283 @default.
- W4285742357 cites W2804194891 @default.
- W4285742357 cites W2808002844 @default.
- W4285742357 cites W2808420356 @default.
- W4285742357 cites W2886149027 @default.
- W4285742357 cites W2899145720 @default.
- W4285742357 cites W2903562285 @default.
- W4285742357 cites W2905437012 @default.
- W4285742357 cites W2921008479 @default.
- W4285742357 cites W2923336951 @default.
- W4285742357 cites W2941733427 @default.
- W4285742357 cites W2943952292 @default.
- W4285742357 cites W2946450932 @default.
- W4285742357 cites W2947898397 @default.
- W4285742357 cites W2953682518 @default.
- W4285742357 cites W2963521811 @default.
- W4285742357 cites W2968303571 @default.
- W4285742357 cites W2970344707 @default.
- W4285742357 cites W2970993639 @default.
- W4285742357 cites W2973192623 @default.
- W4285742357 cites W2979729503 @default.
- W4285742357 cites W2980092400 @default.
- W4285742357 cites W2981850489 @default.
- W4285742357 cites W2991565403 @default.
- W4285742357 cites W2997199480 @default.
- W4285742357 cites W2999681686 @default.
- W4285742357 cites W3005662983 @default.
- W4285742357 cites W3006191871 @default.
- W4285742357 cites W3015014633 @default.
- W4285742357 cites W3017424189 @default.
- W4285742357 cites W3017873643 @default.
- W4285742357 cites W3019843265 @default.
- W4285742357 cites W3021273787 @default.
- W4285742357 cites W3023678943 @default.
- W4285742357 cites W3028067578 @default.
- W4285742357 cites W3046507381 @default.
- W4285742357 cites W3083822387 @default.
- W4285742357 cites W3093916778 @default.
- W4285742357 cites W3094019561 @default.
- W4285742357 cites W4233638687 @default.
- W4285742357 doi "https://doi.org/10.1007/978-981-19-1408-9_6" @default.
- W4285742357 hasPublicationYear "2022" @default.
- W4285742357 type Work @default.
- W4285742357 citedByCount "0" @default.
- W4285742357 crossrefType "book-chapter" @default.
- W4285742357 hasAuthorship W4285742357A5037941914 @default.
- W4285742357 hasAuthorship W4285742357A5057025838 @default.
- W4285742357 hasConcept C108583219 @default.
- W4285742357 hasConcept C119857082 @default.
- W4285742357 hasConcept C121687571 @default.
- W4285742357 hasConcept C12267149 @default.
- W4285742357 hasConcept C149635348 @default.
- W4285742357 hasConcept C150594956 @default.
- W4285742357 hasConcept C151730666 @default.
- W4285742357 hasConcept C154945302 @default.
- W4285742357 hasConcept C24590314 @default.
- W4285742357 hasConcept C2779343474 @default.
- W4285742357 hasConcept C31258907 @default.
- W4285742357 hasConcept C41008148 @default.