Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285744032> ?p ?o ?g. }
- W4285744032 abstract "Background and Aims: Although the wait and watch (W&W) strategy is a treatment choice for locally advanced rectal cancer (LARC) patients who achieve clinical complete response (cCR) after neoadjuvant therapy (NT), the issue on consistency between cCR and pathological CR (pCR) remains unsettled. Herein, we aimed to develop a deep convolutional neural network (DCNN) model using endoscopic images of LARC patients after NT to distinguish tumor regression grade (TRG) 0 from non-TRG0, thus providing strength in identifying surgery candidates. Methods: A total of 1000 LARC patients (6,939 endoscopic images) who underwent radical surgery after NT from April 2013 to April 2021 at the Sixth Affiliated Hospital, Sun Yat-sen University were retrospectively included in our study. Patients were divided into three cohorts in chronological order: the training set for constructing the model, the validation set, and the independent test set for validating its predictive capability. Besides, we compared the model’s performance with that of three endoscopists on a class-balanced, randomly selected subset of 20 patients’ LARC images (10 TRG0 patients with 70 images and 10 non-TRG0 patients with 72 images). The measures used to evaluate the efficacy for identifying TRG0 included overall accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUROC). Results: There were 219 (21.9%) cases of TRG0 in the included patients. The constructed DCNN model in the training set obtained an excellent performance with good accuracy of 94.21%, specificity of 94.39%, NPV of 98.11%, and AUROC of 0.94. The validation set showed accuracy, specificity, NPV, and AUROC of 92.13%, 93.04%, 96.69%, and 0.95, respectively; the corresponding values in the independent set were 87.14%, 92.98%, 91.37%, and 0.77, respectively. In the reader study, the model outperformed the three experienced endoscopists with an AUROC of 0.85. Conclusions: The proposed DCNN model achieved high specificity and NPV in detecting TRG0 LARC tumors after NT, with a better performance than experienced endoscopists. As a supplement to radiological images, this model may serve as a useful tool for identifying surgery candidates in LARC patients after NT." @default.
- W4285744032 created "2022-07-18" @default.
- W4285744032 creator A5014215331 @default.
- W4285744032 creator A5030907892 @default.
- W4285744032 creator A5032280335 @default.
- W4285744032 creator A5036273689 @default.
- W4285744032 creator A5038532452 @default.
- W4285744032 creator A5040738406 @default.
- W4285744032 creator A5042195027 @default.
- W4285744032 creator A5050230136 @default.
- W4285744032 creator A5071037763 @default.
- W4285744032 creator A5076615684 @default.
- W4285744032 creator A5089692510 @default.
- W4285744032 date "2022-04-27" @default.
- W4285744032 modified "2023-10-16" @default.
- W4285744032 title "Endoscopy-Based Deep Convolutional Neural Network Predicts Response to Neoadjuvant Treatment for Locally Advanced Rectal Cancer" @default.
- W4285744032 cites W1982777873 @default.
- W4285744032 cites W2020776130 @default.
- W4285744032 cites W2025144588 @default.
- W4285744032 cites W2091770001 @default.
- W4285744032 cites W2102583333 @default.
- W4285744032 cites W2108083343 @default.
- W4285744032 cites W2124297369 @default.
- W4285744032 cites W2125452425 @default.
- W4285744032 cites W2130192128 @default.
- W4285744032 cites W2142818315 @default.
- W4285744032 cites W2144717403 @default.
- W4285744032 cites W2155492044 @default.
- W4285744032 cites W2219257584 @default.
- W4285744032 cites W2296375990 @default.
- W4285744032 cites W2750749864 @default.
- W4285744032 cites W2795718561 @default.
- W4285744032 cites W2800984153 @default.
- W4285744032 cites W2809278331 @default.
- W4285744032 cites W2811163192 @default.
- W4285744032 cites W2905949064 @default.
- W4285744032 cites W2906098347 @default.
- W4285744032 cites W2956641995 @default.
- W4285744032 cites W2993242178 @default.
- W4285744032 cites W3006349040 @default.
- W4285744032 cites W3016622556 @default.
- W4285744032 cites W3026246689 @default.
- W4285744032 cites W3033633386 @default.
- W4285744032 cites W3108299479 @default.
- W4285744032 cites W3142498373 @default.
- W4285744032 cites W4226339223 @default.
- W4285744032 cites W4244315786 @default.
- W4285744032 doi "https://doi.org/10.3389/fphys.2022.880981" @default.
- W4285744032 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35574447" @default.
- W4285744032 hasPublicationYear "2022" @default.
- W4285744032 type Work @default.
- W4285744032 citedByCount "0" @default.
- W4285744032 crossrefType "journal-article" @default.
- W4285744032 hasAuthorship W4285744032A5014215331 @default.
- W4285744032 hasAuthorship W4285744032A5030907892 @default.
- W4285744032 hasAuthorship W4285744032A5032280335 @default.
- W4285744032 hasAuthorship W4285744032A5036273689 @default.
- W4285744032 hasAuthorship W4285744032A5038532452 @default.
- W4285744032 hasAuthorship W4285744032A5040738406 @default.
- W4285744032 hasAuthorship W4285744032A5042195027 @default.
- W4285744032 hasAuthorship W4285744032A5050230136 @default.
- W4285744032 hasAuthorship W4285744032A5071037763 @default.
- W4285744032 hasAuthorship W4285744032A5076615684 @default.
- W4285744032 hasAuthorship W4285744032A5089692510 @default.
- W4285744032 hasBestOaLocation W42857440321 @default.
- W4285744032 hasConcept C121608353 @default.
- W4285744032 hasConcept C126322002 @default.
- W4285744032 hasConcept C126838900 @default.
- W4285744032 hasConcept C143998085 @default.
- W4285744032 hasConcept C154945302 @default.
- W4285744032 hasConcept C2778292576 @default.
- W4285744032 hasConcept C41008148 @default.
- W4285744032 hasConcept C526805850 @default.
- W4285744032 hasConcept C530470458 @default.
- W4285744032 hasConcept C58471807 @default.
- W4285744032 hasConcept C71924100 @default.
- W4285744032 hasConcept C81363708 @default.
- W4285744032 hasConceptScore W4285744032C121608353 @default.
- W4285744032 hasConceptScore W4285744032C126322002 @default.
- W4285744032 hasConceptScore W4285744032C126838900 @default.
- W4285744032 hasConceptScore W4285744032C143998085 @default.
- W4285744032 hasConceptScore W4285744032C154945302 @default.
- W4285744032 hasConceptScore W4285744032C2778292576 @default.
- W4285744032 hasConceptScore W4285744032C41008148 @default.
- W4285744032 hasConceptScore W4285744032C526805850 @default.
- W4285744032 hasConceptScore W4285744032C530470458 @default.
- W4285744032 hasConceptScore W4285744032C58471807 @default.
- W4285744032 hasConceptScore W4285744032C71924100 @default.
- W4285744032 hasConceptScore W4285744032C81363708 @default.
- W4285744032 hasLocation W42857440321 @default.
- W4285744032 hasLocation W42857440322 @default.
- W4285744032 hasLocation W42857440323 @default.
- W4285744032 hasOpenAccess W4285744032 @default.
- W4285744032 hasPrimaryLocation W42857440321 @default.
- W4285744032 hasRelatedWork W2049214470 @default.
- W4285744032 hasRelatedWork W2392730113 @default.
- W4285744032 hasRelatedWork W2409949902 @default.
- W4285744032 hasRelatedWork W2897848001 @default.
- W4285744032 hasRelatedWork W2978934258 @default.
- W4285744032 hasRelatedWork W3002168311 @default.