Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285791497> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4285791497 endingPage "2491" @default.
- W4285791497 startingPage "2479" @default.
- W4285791497 abstract "Environmental pollution has had substantial impacts on human life, and trash is one of the main sources of such pollution in most countries. Trash classification from a collection of trash images can limit the overloading of garbage disposal systems and efficiently promote recycling activities; thus, development of such a classification system is topical and urgent. This paper proposed an effective trash classification system that relies on a classification module embedded in a hard-ware setup to classify trash in real time. An image dataset is first augmented to enhance the images before classifying them as either inorganic or organic trash. The deep learning–based ResNet-50 model, an improved version of the ResNet model, is used to classify trash from the dataset of trash images. The experimental results, which are tested both on the dataset and in real time, show that ResNet-50 had an average accuracy of 96%, higher than that of related models. Moreover, integrating the classification module into a Raspberry Pi computer, which controlled the trash bin slide so that garbage fell into the appropriate bin for inorganic or organic waste, created a complete trash classification system. This proves the efficiency and high applicability of the proposed system." @default.
- W4285791497 created "2022-07-19" @default.
- W4285791497 creator A5017415225 @default.
- W4285791497 creator A5023041667 @default.
- W4285791497 creator A5023550160 @default.
- W4285791497 creator A5047970505 @default.
- W4285791497 creator A5055401163 @default.
- W4285791497 date "2023-01-01" @default.
- W4285791497 modified "2023-09-25" @default.
- W4285791497 title "A Deep Trash Classification Model on Raspberry Pi 4" @default.
- W4285791497 cites W2995878390 @default.
- W4285791497 cites W3033818887 @default.
- W4285791497 cites W3115612815 @default.
- W4285791497 cites W3118649749 @default.
- W4285791497 cites W3118694803 @default.
- W4285791497 cites W3195475698 @default.
- W4285791497 cites W3199194340 @default.
- W4285791497 cites W3199520281 @default.
- W4285791497 cites W3214128139 @default.
- W4285791497 cites W4200230997 @default.
- W4285791497 cites W4294214983 @default.
- W4285791497 doi "https://doi.org/10.32604/iasc.2023.029078" @default.
- W4285791497 hasPublicationYear "2023" @default.
- W4285791497 type Work @default.
- W4285791497 citedByCount "1" @default.
- W4285791497 countsByYear W42857914972023 @default.
- W4285791497 crossrefType "journal-article" @default.
- W4285791497 hasAuthorship W4285791497A5017415225 @default.
- W4285791497 hasAuthorship W4285791497A5023041667 @default.
- W4285791497 hasAuthorship W4285791497A5023550160 @default.
- W4285791497 hasAuthorship W4285791497A5047970505 @default.
- W4285791497 hasAuthorship W4285791497A5055401163 @default.
- W4285791497 hasBestOaLocation W42857914971 @default.
- W4285791497 hasConcept C105122174 @default.
- W4285791497 hasConcept C108583219 @default.
- W4285791497 hasConcept C11413529 @default.
- W4285791497 hasConcept C115961682 @default.
- W4285791497 hasConcept C149635348 @default.
- W4285791497 hasConcept C154945302 @default.
- W4285791497 hasConcept C156273044 @default.
- W4285791497 hasConcept C18903297 @default.
- W4285791497 hasConcept C199360897 @default.
- W4285791497 hasConcept C2944601119 @default.
- W4285791497 hasConcept C2985745059 @default.
- W4285791497 hasConcept C41008148 @default.
- W4285791497 hasConcept C521259446 @default.
- W4285791497 hasConcept C75294576 @default.
- W4285791497 hasConcept C75403996 @default.
- W4285791497 hasConcept C77088390 @default.
- W4285791497 hasConcept C81860439 @default.
- W4285791497 hasConcept C86803240 @default.
- W4285791497 hasConceptScore W4285791497C105122174 @default.
- W4285791497 hasConceptScore W4285791497C108583219 @default.
- W4285791497 hasConceptScore W4285791497C11413529 @default.
- W4285791497 hasConceptScore W4285791497C115961682 @default.
- W4285791497 hasConceptScore W4285791497C149635348 @default.
- W4285791497 hasConceptScore W4285791497C154945302 @default.
- W4285791497 hasConceptScore W4285791497C156273044 @default.
- W4285791497 hasConceptScore W4285791497C18903297 @default.
- W4285791497 hasConceptScore W4285791497C199360897 @default.
- W4285791497 hasConceptScore W4285791497C2944601119 @default.
- W4285791497 hasConceptScore W4285791497C2985745059 @default.
- W4285791497 hasConceptScore W4285791497C41008148 @default.
- W4285791497 hasConceptScore W4285791497C521259446 @default.
- W4285791497 hasConceptScore W4285791497C75294576 @default.
- W4285791497 hasConceptScore W4285791497C75403996 @default.
- W4285791497 hasConceptScore W4285791497C77088390 @default.
- W4285791497 hasConceptScore W4285791497C81860439 @default.
- W4285791497 hasConceptScore W4285791497C86803240 @default.
- W4285791497 hasIssue "2" @default.
- W4285791497 hasLocation W42857914971 @default.
- W4285791497 hasOpenAccess W4285791497 @default.
- W4285791497 hasPrimaryLocation W42857914971 @default.
- W4285791497 hasRelatedWork W2287663836 @default.
- W4285791497 hasRelatedWork W2352852854 @default.
- W4285791497 hasRelatedWork W2761968398 @default.
- W4285791497 hasRelatedWork W2794817037 @default.
- W4285791497 hasRelatedWork W2886683520 @default.
- W4285791497 hasRelatedWork W2953027818 @default.
- W4285791497 hasRelatedWork W2982269676 @default.
- W4285791497 hasRelatedWork W4244794104 @default.
- W4285791497 hasRelatedWork W4285791497 @default.
- W4285791497 hasRelatedWork W4311609037 @default.
- W4285791497 hasVolume "35" @default.
- W4285791497 isParatext "false" @default.
- W4285791497 isRetracted "false" @default.
- W4285791497 workType "article" @default.