Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285800404> ?p ?o ?g. }
- W4285800404 endingPage "7015" @default.
- W4285800404 startingPage "7001" @default.
- W4285800404 abstract "Abstract Purpose The accurate and reliable segmentation of prostate cancer (PCa) lesions using multiparametric magnetic resonance imaging (mpMRI) sequences, is crucial to the image‐guided intervention and treatment of prostate disease. For PCa lesion segmentation, it is essential to reliably combine local and global information to retain the features of small targets at multiple scales. Therefore, this study proposes a multi‐scale segmentation network with a cascading pyramid convolution module (CPCM) and a double‐input channel attention module (DCAM) for the automated and accurate segmentation of PCa lesions using mpMRI. Methods First, the region of interest was extracted from the data by clipping to enlarge the target region and reduce the background noise interference. Next, four CPCMs with large convolution kernels in their skip connection paths were designed to improve the feature extraction capability of the network for small targets. At the same time, a convolution decomposition was applied to reduce the computational complexity. Finally, the DCAM was adopted in the decoder to provide bottom‐up semantic discriminative guidance; it can use the semantic information of the network's deep features to guide the shallow output of features with a higher discriminant ability. A residual refinement module (RRM) was also designed to strengthen the recognition ability of each stage. The feature maps of the skip connection and the decoder all go through the RRM. Results For the Initiative for Collaborative Computer Vision Benchmarking (I2CVB) dataset, our proposed model achieved a Dice similarity coefficient (DSC) of 79.31% and an average boundary distance (ABD) of 4.15 mm. For the Prostate Multiparametric MRI (PROMM) dataset, our method greatly improved the DSC to 82.11% and obtained an ABD of 3.64 mm. Conclusions The experimental results of two different mpMRI prostate datasets demonstrate that our model is more accurate and reliable on small targets. In addition, it outperforms other state‐of‐the‐art methods." @default.
- W4285800404 created "2022-07-19" @default.
- W4285800404 creator A5001991790 @default.
- W4285800404 creator A5036242008 @default.
- W4285800404 creator A5037092055 @default.
- W4285800404 creator A5046597133 @default.
- W4285800404 creator A5070038394 @default.
- W4285800404 creator A5075692285 @default.
- W4285800404 date "2022-07-30" @default.
- W4285800404 modified "2023-10-17" @default.
- W4285800404 title "Multi‐scale discriminative network for prostate cancer lesion segmentation in multiparametric MR images" @default.
- W4285800404 cites W1827911007 @default.
- W4285800404 cites W1901129140 @default.
- W4285800404 cites W1934410531 @default.
- W4285800404 cites W1973288185 @default.
- W4285800404 cites W1987869189 @default.
- W4285800404 cites W2106033751 @default.
- W4285800404 cites W2153431772 @default.
- W4285800404 cites W2194775991 @default.
- W4285800404 cites W2464708700 @default.
- W4285800404 cites W2549139847 @default.
- W4285800404 cites W2598666589 @default.
- W4285800404 cites W2604790786 @default.
- W4285800404 cites W2748604568 @default.
- W4285800404 cites W2753071814 @default.
- W4285800404 cites W2793905111 @default.
- W4285800404 cites W2884436604 @default.
- W4285800404 cites W2888358068 @default.
- W4285800404 cites W2902977244 @default.
- W4285800404 cites W2952722001 @default.
- W4285800404 cites W2962731543 @default.
- W4285800404 cites W2963706010 @default.
- W4285800404 cites W2971572609 @default.
- W4285800404 cites W2979761440 @default.
- W4285800404 cites W2998280330 @default.
- W4285800404 cites W3009963727 @default.
- W4285800404 cites W3019362006 @default.
- W4285800404 cites W3084075976 @default.
- W4285800404 cites W3089594915 @default.
- W4285800404 cites W3096458623 @default.
- W4285800404 cites W3100708836 @default.
- W4285800404 cites W3101639073 @default.
- W4285800404 cites W3102875249 @default.
- W4285800404 cites W3128646645 @default.
- W4285800404 cites W3173922584 @default.
- W4285800404 doi "https://doi.org/10.1002/mp.15861" @default.
- W4285800404 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35851482" @default.
- W4285800404 hasPublicationYear "2022" @default.
- W4285800404 type Work @default.
- W4285800404 citedByCount "4" @default.
- W4285800404 countsByYear W42858004042022 @default.
- W4285800404 countsByYear W42858004042023 @default.
- W4285800404 crossrefType "journal-article" @default.
- W4285800404 hasAuthorship W4285800404A5001991790 @default.
- W4285800404 hasAuthorship W4285800404A5036242008 @default.
- W4285800404 hasAuthorship W4285800404A5037092055 @default.
- W4285800404 hasAuthorship W4285800404A5046597133 @default.
- W4285800404 hasAuthorship W4285800404A5070038394 @default.
- W4285800404 hasAuthorship W4285800404A5075692285 @default.
- W4285800404 hasConcept C115961682 @default.
- W4285800404 hasConcept C124504099 @default.
- W4285800404 hasConcept C138885662 @default.
- W4285800404 hasConcept C153180895 @default.
- W4285800404 hasConcept C154945302 @default.
- W4285800404 hasConcept C2776401178 @default.
- W4285800404 hasConcept C31972630 @default.
- W4285800404 hasConcept C41008148 @default.
- W4285800404 hasConcept C41895202 @default.
- W4285800404 hasConcept C45347329 @default.
- W4285800404 hasConcept C50644808 @default.
- W4285800404 hasConcept C52622490 @default.
- W4285800404 hasConcept C89600930 @default.
- W4285800404 hasConcept C97931131 @default.
- W4285800404 hasConcept C99498987 @default.
- W4285800404 hasConceptScore W4285800404C115961682 @default.
- W4285800404 hasConceptScore W4285800404C124504099 @default.
- W4285800404 hasConceptScore W4285800404C138885662 @default.
- W4285800404 hasConceptScore W4285800404C153180895 @default.
- W4285800404 hasConceptScore W4285800404C154945302 @default.
- W4285800404 hasConceptScore W4285800404C2776401178 @default.
- W4285800404 hasConceptScore W4285800404C31972630 @default.
- W4285800404 hasConceptScore W4285800404C41008148 @default.
- W4285800404 hasConceptScore W4285800404C41895202 @default.
- W4285800404 hasConceptScore W4285800404C45347329 @default.
- W4285800404 hasConceptScore W4285800404C50644808 @default.
- W4285800404 hasConceptScore W4285800404C52622490 @default.
- W4285800404 hasConceptScore W4285800404C89600930 @default.
- W4285800404 hasConceptScore W4285800404C97931131 @default.
- W4285800404 hasConceptScore W4285800404C99498987 @default.
- W4285800404 hasFunder F4320321885 @default.
- W4285800404 hasIssue "11" @default.
- W4285800404 hasLocation W42858004041 @default.
- W4285800404 hasLocation W42858004042 @default.
- W4285800404 hasOpenAccess W4285800404 @default.
- W4285800404 hasPrimaryLocation W42858004041 @default.
- W4285800404 hasRelatedWork W1482209366 @default.
- W4285800404 hasRelatedWork W1522196789 @default.
- W4285800404 hasRelatedWork W2110523656 @default.