Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285802252> ?p ?o ?g. }
- W4285802252 endingPage "3453" @default.
- W4285802252 startingPage "3453" @default.
- W4285802252 abstract "Uncrewed aerial systems (UASs) have emerged as powerful ecological observation platforms capable of filling critical spatial and spectral observation gaps in plant physiological and phenological traits that have been difficult to measure from space-borne sensors. Despite recent technological advances, the high cost of drone-borne sensors limits the widespread application of UAS technology across scientific disciplines. Here, we evaluate the tradeoffs between off-the-shelf and sophisticated drone-borne sensors for mapping plant species and plant functional types (PFTs) within a diverse grassland. Specifically, we compared species and PFT mapping accuracies derived from hyperspectral, multispectral, and RGB imagery fused with light detection and ranging (LiDAR) or structure-for-motion (SfM)-derived canopy height models (CHM). Sensor–data fusion were used to consider either a single observation period or near-monthly observation frequencies for integration of phenological information (i.e., phenometrics). Results indicate that overall classification accuracies for plant species and PFTs were highest in hyperspectral and LiDAR-CHM fusions (78 and 89%, respectively), followed by multispectral and phenometric–SfM–CHM fusions (52 and 60%, respectively) and RGB and SfM–CHM fusions (45 and 47%, respectively). Our findings demonstrate clear tradeoffs in mapping accuracies from economical versus exorbitant sensor networks but highlight that off-the-shelf multispectral sensors may achieve accuracies comparable to those of sophisticated UAS sensors by integrating phenometrics into machine learning image classifiers." @default.
- W4285802252 created "2022-07-19" @default.
- W4285802252 creator A5036063743 @default.
- W4285802252 creator A5059792318 @default.
- W4285802252 date "2022-07-18" @default.
- W4285802252 modified "2023-10-05" @default.
- W4285802252 title "Multisensor UAS mapping of Plant Species and Plant Functional Types in Midwestern Grasslands" @default.
- W4285802252 cites W1976723446 @default.
- W4285802252 cites W1980337255 @default.
- W4285802252 cites W2028956118 @default.
- W4285802252 cites W2039589627 @default.
- W4285802252 cites W2067593534 @default.
- W4285802252 cites W2089212648 @default.
- W4285802252 cites W2091374137 @default.
- W4285802252 cites W2118320318 @default.
- W4285802252 cites W2132424470 @default.
- W4285802252 cites W2139086914 @default.
- W4285802252 cites W2150853404 @default.
- W4285802252 cites W2165796970 @default.
- W4285802252 cites W2261059368 @default.
- W4285802252 cites W2320847175 @default.
- W4285802252 cites W2332916160 @default.
- W4285802252 cites W2474186331 @default.
- W4285802252 cites W2523253747 @default.
- W4285802252 cites W2559943547 @default.
- W4285802252 cites W2606100861 @default.
- W4285802252 cites W2728388975 @default.
- W4285802252 cites W2738149591 @default.
- W4285802252 cites W2752099686 @default.
- W4285802252 cites W2767193133 @default.
- W4285802252 cites W2767657507 @default.
- W4285802252 cites W2771475405 @default.
- W4285802252 cites W2790544330 @default.
- W4285802252 cites W2807137312 @default.
- W4285802252 cites W2894214161 @default.
- W4285802252 cites W2904606389 @default.
- W4285802252 cites W2904765917 @default.
- W4285802252 cites W2907617364 @default.
- W4285802252 cites W2908563588 @default.
- W4285802252 cites W2911964244 @default.
- W4285802252 cites W2913916713 @default.
- W4285802252 cites W2914709307 @default.
- W4285802252 cites W2914880340 @default.
- W4285802252 cites W2979736561 @default.
- W4285802252 cites W2982343528 @default.
- W4285802252 cites W2982571809 @default.
- W4285802252 cites W2988248899 @default.
- W4285802252 cites W3000457862 @default.
- W4285802252 cites W3007054076 @default.
- W4285802252 cites W3007973394 @default.
- W4285802252 cites W3046551762 @default.
- W4285802252 cites W3080305507 @default.
- W4285802252 cites W3089890206 @default.
- W4285802252 cites W3107927148 @default.
- W4285802252 cites W3108300466 @default.
- W4285802252 cites W3109510788 @default.
- W4285802252 cites W3112078650 @default.
- W4285802252 cites W3117712630 @default.
- W4285802252 cites W3159911856 @default.
- W4285802252 cites W3163645172 @default.
- W4285802252 cites W3169604919 @default.
- W4285802252 cites W3174618321 @default.
- W4285802252 cites W3194613964 @default.
- W4285802252 cites W3200997498 @default.
- W4285802252 cites W3202549092 @default.
- W4285802252 cites W4206830941 @default.
- W4285802252 cites W4220893071 @default.
- W4285802252 cites W4221064247 @default.
- W4285802252 cites W4225784317 @default.
- W4285802252 doi "https://doi.org/10.3390/rs14143453" @default.
- W4285802252 hasPublicationYear "2022" @default.
- W4285802252 type Work @default.
- W4285802252 citedByCount "0" @default.
- W4285802252 crossrefType "journal-article" @default.
- W4285802252 hasAuthorship W4285802252A5036063743 @default.
- W4285802252 hasAuthorship W4285802252A5059792318 @default.
- W4285802252 hasBestOaLocation W42858022521 @default.
- W4285802252 hasConcept C101000010 @default.
- W4285802252 hasConcept C154945302 @default.
- W4285802252 hasConcept C159078339 @default.
- W4285802252 hasConcept C173163844 @default.
- W4285802252 hasConcept C18903297 @default.
- W4285802252 hasConcept C205649164 @default.
- W4285802252 hasConcept C2985179745 @default.
- W4285802252 hasConcept C2987819851 @default.
- W4285802252 hasConcept C2993839484 @default.
- W4285802252 hasConcept C39432304 @default.
- W4285802252 hasConcept C41008148 @default.
- W4285802252 hasConcept C51399673 @default.
- W4285802252 hasConcept C59519942 @default.
- W4285802252 hasConcept C59822182 @default.
- W4285802252 hasConcept C62649853 @default.
- W4285802252 hasConcept C82990744 @default.
- W4285802252 hasConcept C86803240 @default.
- W4285802252 hasConceptScore W4285802252C101000010 @default.
- W4285802252 hasConceptScore W4285802252C154945302 @default.
- W4285802252 hasConceptScore W4285802252C159078339 @default.
- W4285802252 hasConceptScore W4285802252C173163844 @default.