Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285807796> ?p ?o ?g. }
- W4285807796 endingPage "105888" @default.
- W4285807796 startingPage "105888" @default.
- W4285807796 abstract "Spike sorting is one of the key techniques to understand brain activity. In this paper, we propose a novel deep learning approach based on convolutional neural networks (CNN) and long short term memory (LSTM) to implement overlapping spike sorting. The results of the simulated data demonstrated that the clustering accuracy was greater than 99.9% and 99.0% for non-overlapping spikes and overlapping spikes, respectively. Moreover, the proposed method performed better than our previous deep learning approach named 1D-CNN. In addition, the experimental data recorded from the primary visual cortex of a macaque monkey were used to evaluate the proposed method in a practical application. It was shown that the method could successfully isolate most overlapping spikes of different neurons (ranging from two to five). In summary, the CNN + LSTM method proposed in this paper is of great advantage for overlapping spike sorting with high accuracy. It lays the foundation for application in more challenging works, such as distinguishing the simultaneous recordings of multichannel neuronal activities." @default.
- W4285807796 created "2022-07-19" @default.
- W4285807796 creator A5015145092 @default.
- W4285807796 creator A5026250850 @default.
- W4285807796 creator A5054349869 @default.
- W4285807796 creator A5082664273 @default.
- W4285807796 date "2022-09-01" @default.
- W4285807796 modified "2023-10-14" @default.
- W4285807796 title "Classification of overlapping spikes using convolutional neural networks and long short term memory" @default.
- W4285807796 cites W1964812476 @default.
- W4285807796 cites W1972415165 @default.
- W4285807796 cites W1973009575 @default.
- W4285807796 cites W1982787715 @default.
- W4285807796 cites W1987345946 @default.
- W4285807796 cites W2000889718 @default.
- W4285807796 cites W2007495909 @default.
- W4285807796 cites W2014885556 @default.
- W4285807796 cites W2021417436 @default.
- W4285807796 cites W2037387380 @default.
- W4285807796 cites W2076063813 @default.
- W4285807796 cites W2095224699 @default.
- W4285807796 cites W2097872824 @default.
- W4285807796 cites W2109387052 @default.
- W4285807796 cites W2114652450 @default.
- W4285807796 cites W2114747787 @default.
- W4285807796 cites W2117539524 @default.
- W4285807796 cites W2122227532 @default.
- W4285807796 cites W2125320262 @default.
- W4285807796 cites W2136104104 @default.
- W4285807796 cites W2139782195 @default.
- W4285807796 cites W2151047074 @default.
- W4285807796 cites W2153886236 @default.
- W4285807796 cites W2168182791 @default.
- W4285807796 cites W2186584449 @default.
- W4285807796 cites W2345010043 @default.
- W4285807796 cites W2512047842 @default.
- W4285807796 cites W2561805292 @default.
- W4285807796 cites W2561981131 @default.
- W4285807796 cites W2592929672 @default.
- W4285807796 cites W2767493192 @default.
- W4285807796 cites W2808797200 @default.
- W4285807796 cites W2897776175 @default.
- W4285807796 cites W2915509563 @default.
- W4285807796 cites W2931659292 @default.
- W4285807796 cites W2951707438 @default.
- W4285807796 cites W2956530251 @default.
- W4285807796 cites W2961805459 @default.
- W4285807796 cites W2963042536 @default.
- W4285807796 cites W2998622041 @default.
- W4285807796 cites W3100246426 @default.
- W4285807796 cites W3106114001 @default.
- W4285807796 cites W3188225625 @default.
- W4285807796 cites W4205634189 @default.
- W4285807796 doi "https://doi.org/10.1016/j.compbiomed.2022.105888" @default.
- W4285807796 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35872414" @default.
- W4285807796 hasPublicationYear "2022" @default.
- W4285807796 type Work @default.
- W4285807796 citedByCount "4" @default.
- W4285807796 countsByYear W42858077962023 @default.
- W4285807796 crossrefType "journal-article" @default.
- W4285807796 hasAuthorship W4285807796A5015145092 @default.
- W4285807796 hasAuthorship W4285807796A5026250850 @default.
- W4285807796 hasAuthorship W4285807796A5054349869 @default.
- W4285807796 hasAuthorship W4285807796A5082664273 @default.
- W4285807796 hasConcept C108583219 @default.
- W4285807796 hasConcept C111696304 @default.
- W4285807796 hasConcept C11413529 @default.
- W4285807796 hasConcept C115903868 @default.
- W4285807796 hasConcept C119857082 @default.
- W4285807796 hasConcept C121332964 @default.
- W4285807796 hasConcept C153180895 @default.
- W4285807796 hasConcept C154945302 @default.
- W4285807796 hasConcept C169760540 @default.
- W4285807796 hasConcept C2777613131 @default.
- W4285807796 hasConcept C2778950215 @default.
- W4285807796 hasConcept C2781390188 @default.
- W4285807796 hasConcept C41008148 @default.
- W4285807796 hasConcept C61797465 @default.
- W4285807796 hasConcept C62520636 @default.
- W4285807796 hasConcept C73555534 @default.
- W4285807796 hasConcept C81363708 @default.
- W4285807796 hasConcept C86803240 @default.
- W4285807796 hasConceptScore W4285807796C108583219 @default.
- W4285807796 hasConceptScore W4285807796C111696304 @default.
- W4285807796 hasConceptScore W4285807796C11413529 @default.
- W4285807796 hasConceptScore W4285807796C115903868 @default.
- W4285807796 hasConceptScore W4285807796C119857082 @default.
- W4285807796 hasConceptScore W4285807796C121332964 @default.
- W4285807796 hasConceptScore W4285807796C153180895 @default.
- W4285807796 hasConceptScore W4285807796C154945302 @default.
- W4285807796 hasConceptScore W4285807796C169760540 @default.
- W4285807796 hasConceptScore W4285807796C2777613131 @default.
- W4285807796 hasConceptScore W4285807796C2778950215 @default.
- W4285807796 hasConceptScore W4285807796C2781390188 @default.
- W4285807796 hasConceptScore W4285807796C41008148 @default.
- W4285807796 hasConceptScore W4285807796C61797465 @default.
- W4285807796 hasConceptScore W4285807796C62520636 @default.
- W4285807796 hasConceptScore W4285807796C73555534 @default.