Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285808529> ?p ?o ?g. }
- W4285808529 endingPage "105939" @default.
- W4285808529 startingPage "105939" @default.
- W4285808529 abstract "The water treatment sludge (WTS), a byproduct of coagulation-flocculation-sedimentation process in drinking water treatment contains significant concentration of aluminium (Al). The WTS is mostly disposed on land or in sewers without treatment. This practice not only poses a serious threat to environment but also results in permanent loss of metals like Al. In order to prevent the adverse effects, studies are being conducted to find alternative use of WTS, and one of the focus areas is to recover coagulant (a solution containing Al) from the WTS by leaching with high strength acid and reuse it as coagulant for treating industrial wastewater. However, the use of the recovered coagulant (RC) for treatment of drinking water is not yet reported. The main concern being the presence of other metals in the RC along with Al. The RC if added to remove turbidity from drinking water may result in elevated concentration of metals in treated water which is objectionable. In order to address this issue, the present study proposes a method to recover coagulant from WTS, and reuse it safely as a coagulant in drinking water treatment without hampering the treated water quality. Specifically, the study used low strength nitric acid to leach Al from WTS. The leaching studies were performed using a Box-Behnken Design (BBD) with three factors: acid strength (M), reaction time and sludge dose. Each factor was set at three levels: acid strength (0.025 M, 0.1625 M and 0.3 M), reaction time (30 min, 75 min and 120 min) and sludge dose (10 g/l, 12.5 g/l and 15 g/l). As Al is the main element responsible for coagulation, leaching efficiency of Al (AlLE) was fixed as the response variable. Performance of the RC in removing turbidity was evaluated on synthetic turbid water and was compared with turbidity removal obtained with 1% (w/v) solution of commercial alum. The results indicate that a maximum concentration of 432 mg/l of Al could be achieved in the RC with optimum factor settings (obtained from statistical analysis) of 0.25 M acid strength, 11.17 g/l sludge dose and 120 min reaction time. The addition of 1 ml/l of the RC in synthetic turbid water resulted in 74% removal of turbidity (with effluent turbidity concentration < 20 NTU) which was similar to removal efficiency obtained with addition of 0.6 ml/l of 1% (w/v) commercial alum solution. The environmental significance of the study is that, it shows that the RC has potential to be used as a coagulant in drinking water treatment. This will not only prevent the permanent loss of Al due to disposing the WTS in landfills but also minimize the requirement of fresh Al salts for coagulation thus resulting in conservation of a natural resource." @default.
- W4285808529 created "2022-07-19" @default.
- W4285808529 creator A5010461844 @default.
- W4285808529 creator A5028127944 @default.
- W4285808529 creator A5082421621 @default.
- W4285808529 date "2022-08-01" @default.
- W4285808529 modified "2023-10-06" @default.
- W4285808529 title "Turbidity removal from synthetic turbid water using coagulant recovered from water treatment sludge: A potential method to recycle and conserve aluminium" @default.
- W4285808529 cites W1964422166 @default.
- W4285808529 cites W1966067908 @default.
- W4285808529 cites W2020441043 @default.
- W4285808529 cites W2020738751 @default.
- W4285808529 cites W2029453948 @default.
- W4285808529 cites W2030796562 @default.
- W4285808529 cites W2053516511 @default.
- W4285808529 cites W2059816723 @default.
- W4285808529 cites W2065712573 @default.
- W4285808529 cites W2071283030 @default.
- W4285808529 cites W2091351086 @default.
- W4285808529 cites W2093520978 @default.
- W4285808529 cites W2094777953 @default.
- W4285808529 cites W2212034559 @default.
- W4285808529 cites W2274130404 @default.
- W4285808529 cites W2321951303 @default.
- W4285808529 cites W2346278545 @default.
- W4285808529 cites W2421904840 @default.
- W4285808529 cites W2531333080 @default.
- W4285808529 cites W2540454598 @default.
- W4285808529 cites W2564566455 @default.
- W4285808529 cites W2578605582 @default.
- W4285808529 cites W2730901376 @default.
- W4285808529 cites W2762551269 @default.
- W4285808529 cites W2774586217 @default.
- W4285808529 cites W2796003713 @default.
- W4285808529 cites W2804212843 @default.
- W4285808529 cites W2806405509 @default.
- W4285808529 cites W2890153471 @default.
- W4285808529 cites W2942916019 @default.
- W4285808529 cites W2942941024 @default.
- W4285808529 cites W2950195561 @default.
- W4285808529 cites W2952092257 @default.
- W4285808529 cites W2954332489 @default.
- W4285808529 cites W2966889371 @default.
- W4285808529 cites W2967303514 @default.
- W4285808529 cites W2989562714 @default.
- W4285808529 cites W3006129489 @default.
- W4285808529 cites W3008593077 @default.
- W4285808529 cites W3014864428 @default.
- W4285808529 cites W3033583065 @default.
- W4285808529 cites W3039329809 @default.
- W4285808529 cites W3046374306 @default.
- W4285808529 cites W3090281152 @default.
- W4285808529 cites W3102330095 @default.
- W4285808529 cites W3107838089 @default.
- W4285808529 cites W3111594182 @default.
- W4285808529 cites W3119378281 @default.
- W4285808529 cites W3132177584 @default.
- W4285808529 doi "https://doi.org/10.1016/j.hydromet.2022.105939" @default.
- W4285808529 hasPublicationYear "2022" @default.
- W4285808529 type Work @default.
- W4285808529 citedByCount "5" @default.
- W4285808529 countsByYear W42858085292022 @default.
- W4285808529 countsByYear W42858085292023 @default.
- W4285808529 crossrefType "journal-article" @default.
- W4285808529 hasAuthorship W4285808529A5010461844 @default.
- W4285808529 hasAuthorship W4285808529A5028127944 @default.
- W4285808529 hasAuthorship W4285808529A5082421621 @default.
- W4285808529 hasConcept C111368507 @default.
- W4285808529 hasConcept C118552586 @default.
- W4285808529 hasConcept C127313418 @default.
- W4285808529 hasConcept C127413603 @default.
- W4285808529 hasConcept C148815931 @default.
- W4285808529 hasConcept C151730666 @default.
- W4285808529 hasConcept C15744967 @default.
- W4285808529 hasConcept C159390177 @default.
- W4285808529 hasConcept C159750122 @default.
- W4285808529 hasConcept C178790620 @default.
- W4285808529 hasConcept C185592680 @default.
- W4285808529 hasConcept C190960625 @default.
- W4285808529 hasConcept C206588197 @default.
- W4285808529 hasConcept C2778382381 @default.
- W4285808529 hasConcept C2816523 @default.
- W4285808529 hasConcept C29941650 @default.
- W4285808529 hasConcept C39432304 @default.
- W4285808529 hasConcept C528095902 @default.
- W4285808529 hasConcept C548081761 @default.
- W4285808529 hasConcept C57442070 @default.
- W4285808529 hasConcept C64016661 @default.
- W4285808529 hasConcept C86803240 @default.
- W4285808529 hasConcept C87717796 @default.
- W4285808529 hasConcept C90982505 @default.
- W4285808529 hasConcept C94061648 @default.
- W4285808529 hasConceptScore W4285808529C111368507 @default.
- W4285808529 hasConceptScore W4285808529C118552586 @default.
- W4285808529 hasConceptScore W4285808529C127313418 @default.
- W4285808529 hasConceptScore W4285808529C127413603 @default.
- W4285808529 hasConceptScore W4285808529C148815931 @default.
- W4285808529 hasConceptScore W4285808529C151730666 @default.