Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285808535> ?p ?o ?g. }
- W4285808535 endingPage "227" @default.
- W4285808535 startingPage "215" @default.
- W4285808535 abstract "In this paper, an unsupervised manifold learning algorithm with polynomial mapping on the symmetric positive-definite (SPD) matrix manifold is introduced by matrix information geometry method for data dimensional reduction. Firstly, the mathematical knowledge about the SPD matrix manifold is presented including the metric, geodesic and submanifold. And then, the high dimensional information coordinates are given by different SPD matrix data for constructing the polynomial kernel matrix, weight matrix and sparsity preserving matrix. Next, the manifold learning algorithm on the SPD matrix manifold is proposed by polynomial mapping with geodesic distance. Finally, comparing with some conventional methods in terms of accuracy rate and time cost, the preliminary analysis results indicate that the proposed approach is able to offer a consistent and comprehensive method to realize the SPD matrix data dimensional reduction." @default.
- W4285808535 created "2022-07-19" @default.
- W4285808535 creator A5036284035 @default.
- W4285808535 date "2022-09-01" @default.
- W4285808535 modified "2023-09-30" @default.
- W4285808535 title "Unsupervised manifold learning with polynomial mapping on symmetric positive definite matrices" @default.
- W4285808535 cites W1515954165 @default.
- W4285808535 cites W1876688746 @default.
- W4285808535 cites W2001141328 @default.
- W4285808535 cites W2017262657 @default.
- W4285808535 cites W2020550878 @default.
- W4285808535 cites W2041646220 @default.
- W4285808535 cites W2053186076 @default.
- W4285808535 cites W2063385051 @default.
- W4285808535 cites W2074413628 @default.
- W4285808535 cites W2077776048 @default.
- W4285808535 cites W2097308346 @default.
- W4285808535 cites W2106295728 @default.
- W4285808535 cites W2129111551 @default.
- W4285808535 cites W2142770599 @default.
- W4285808535 cites W2159874418 @default.
- W4285808535 cites W2554291319 @default.
- W4285808535 cites W2596981025 @default.
- W4285808535 cites W2965966043 @default.
- W4285808535 cites W2971797722 @default.
- W4285808535 cites W3012477929 @default.
- W4285808535 cites W3056625139 @default.
- W4285808535 cites W3116441872 @default.
- W4285808535 cites W3131914614 @default.
- W4285808535 cites W3155592888 @default.
- W4285808535 cites W3197738873 @default.
- W4285808535 cites W3216102226 @default.
- W4285808535 cites W4213367101 @default.
- W4285808535 cites W4224941545 @default.
- W4285808535 doi "https://doi.org/10.1016/j.ins.2022.07.077" @default.
- W4285808535 hasPublicationYear "2022" @default.
- W4285808535 type Work @default.
- W4285808535 citedByCount "1" @default.
- W4285808535 countsByYear W42858085352023 @default.
- W4285808535 crossrefType "journal-article" @default.
- W4285808535 hasAuthorship W4285808535A5036284035 @default.
- W4285808535 hasConcept C101044782 @default.
- W4285808535 hasConcept C106487976 @default.
- W4285808535 hasConcept C11413529 @default.
- W4285808535 hasConcept C121332964 @default.
- W4285808535 hasConcept C126352355 @default.
- W4285808535 hasConcept C127413603 @default.
- W4285808535 hasConcept C134306372 @default.
- W4285808535 hasConcept C139018669 @default.
- W4285808535 hasConcept C151300846 @default.
- W4285808535 hasConcept C151876577 @default.
- W4285808535 hasConcept C153120616 @default.
- W4285808535 hasConcept C154945302 @default.
- W4285808535 hasConcept C158693339 @default.
- W4285808535 hasConcept C159985019 @default.
- W4285808535 hasConcept C162324750 @default.
- W4285808535 hasConcept C165818556 @default.
- W4285808535 hasConcept C176217482 @default.
- W4285808535 hasConcept C192562407 @default.
- W4285808535 hasConcept C202444582 @default.
- W4285808535 hasConcept C21547014 @default.
- W4285808535 hasConcept C33923547 @default.
- W4285808535 hasConcept C41008148 @default.
- W4285808535 hasConcept C49712288 @default.
- W4285808535 hasConcept C529865628 @default.
- W4285808535 hasConcept C54848796 @default.
- W4285808535 hasConcept C62520636 @default.
- W4285808535 hasConcept C70518039 @default.
- W4285808535 hasConcept C74193536 @default.
- W4285808535 hasConcept C78519656 @default.
- W4285808535 hasConcept C90119067 @default.
- W4285808535 hasConcept C94947713 @default.
- W4285808535 hasConceptScore W4285808535C101044782 @default.
- W4285808535 hasConceptScore W4285808535C106487976 @default.
- W4285808535 hasConceptScore W4285808535C11413529 @default.
- W4285808535 hasConceptScore W4285808535C121332964 @default.
- W4285808535 hasConceptScore W4285808535C126352355 @default.
- W4285808535 hasConceptScore W4285808535C127413603 @default.
- W4285808535 hasConceptScore W4285808535C134306372 @default.
- W4285808535 hasConceptScore W4285808535C139018669 @default.
- W4285808535 hasConceptScore W4285808535C151300846 @default.
- W4285808535 hasConceptScore W4285808535C151876577 @default.
- W4285808535 hasConceptScore W4285808535C153120616 @default.
- W4285808535 hasConceptScore W4285808535C154945302 @default.
- W4285808535 hasConceptScore W4285808535C158693339 @default.
- W4285808535 hasConceptScore W4285808535C159985019 @default.
- W4285808535 hasConceptScore W4285808535C162324750 @default.
- W4285808535 hasConceptScore W4285808535C165818556 @default.
- W4285808535 hasConceptScore W4285808535C176217482 @default.
- W4285808535 hasConceptScore W4285808535C192562407 @default.
- W4285808535 hasConceptScore W4285808535C202444582 @default.
- W4285808535 hasConceptScore W4285808535C21547014 @default.
- W4285808535 hasConceptScore W4285808535C33923547 @default.
- W4285808535 hasConceptScore W4285808535C41008148 @default.
- W4285808535 hasConceptScore W4285808535C49712288 @default.
- W4285808535 hasConceptScore W4285808535C529865628 @default.
- W4285808535 hasConceptScore W4285808535C54848796 @default.
- W4285808535 hasConceptScore W4285808535C62520636 @default.