Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285809711> ?p ?o ?g. }
- W4285809711 endingPage "1237.e7" @default.
- W4285809711 startingPage "1226" @default.
- W4285809711 abstract "Transthoracic echocardiography is the leading cardiac imaging modality for patients admitted with COVID-19, a condition of high short-term mortality. The aim of this study was to test the hypothesis that artificial intelligence (AI)-based analysis of echocardiographic images could predict mortality more accurately than conventional analysis by a human expert.Patients admitted to 13 hospitals for acute COVID-19 who underwent transthoracic echocardiography were included. Left ventricular ejection fraction (LVEF) and left ventricular longitudinal strain (LVLS) were obtained manually by multiple expert readers and by automated AI software. The ability of the manual and AI analyses to predict all-cause mortality was compared.In total, 870 patients were enrolled. The mortality rate was 27.4% after a mean follow-up period of 230 ± 115 days. AI analysis had lower variability than manual analysis for both LVEF (P = .003) and LVLS (P = .005). AI-derived LVEF and LVLS were predictors of mortality in univariable and multivariable regression analysis (odds ratio, 0.974 [95% CI, 0.956-0.991; P = .003] for LVEF; odds ratio, 1.060 [95% CI, 1.019-1.105; P = .004] for LVLS), but LVEF and LVLS obtained by manual analysis were not. Direct comparison of the predictive value of AI versus manual measurements of LVEF and LVLS showed that AI was significantly better (P = .005 and P = .003, respectively). In addition, AI-derived LVEF and LVLS had more significant and stronger correlations to other objective biomarkers of acute disease than manual reads.AI-based analysis of LVEF and LVLS had similar feasibility as manual analysis, minimized variability, and consequently increased the statistical power to predict mortality. AI-based, but not manual, analyses were a significant predictor of in-hospital and follow-up mortality." @default.
- W4285809711 created "2022-07-19" @default.
- W4285809711 creator A5008668499 @default.
- W4285809711 creator A5015037291 @default.
- W4285809711 creator A5015245629 @default.
- W4285809711 creator A5018100890 @default.
- W4285809711 creator A5021416774 @default.
- W4285809711 creator A5022099966 @default.
- W4285809711 creator A5022538261 @default.
- W4285809711 creator A5027427175 @default.
- W4285809711 creator A5028138849 @default.
- W4285809711 creator A5030723794 @default.
- W4285809711 creator A5032924551 @default.
- W4285809711 creator A5043534576 @default.
- W4285809711 creator A5047755260 @default.
- W4285809711 creator A5048435993 @default.
- W4285809711 creator A5049737843 @default.
- W4285809711 creator A5049765310 @default.
- W4285809711 creator A5058664452 @default.
- W4285809711 creator A5065689279 @default.
- W4285809711 creator A5066856520 @default.
- W4285809711 creator A5070302668 @default.
- W4285809711 creator A5085375599 @default.
- W4285809711 creator A5091698214 @default.
- W4285809711 date "2022-12-01" @default.
- W4285809711 modified "2023-10-13" @default.
- W4285809711 title "Human versus Artificial Intelligence–Based Echocardiographic Analysis as a Predictor of Outcomes: An Analysis from the World Alliance Societies of Echocardiography COVID Study" @default.
- W4285809711 cites W1708392634 @default.
- W4285809711 cites W2038165500 @default.
- W4285809711 cites W2124624517 @default.
- W4285809711 cites W2190898938 @default.
- W4285809711 cites W2274578228 @default.
- W4285809711 cites W2413889045 @default.
- W4285809711 cites W2549857822 @default.
- W4285809711 cites W2584944958 @default.
- W4285809711 cites W2734839660 @default.
- W4285809711 cites W2803176574 @default.
- W4285809711 cites W2808348275 @default.
- W4285809711 cites W2896287590 @default.
- W4285809711 cites W2897320536 @default.
- W4285809711 cites W2897944447 @default.
- W4285809711 cites W2920679031 @default.
- W4285809711 cites W2921335396 @default.
- W4285809711 cites W2974289453 @default.
- W4285809711 cites W3008600938 @default.
- W4285809711 cites W3012747666 @default.
- W4285809711 cites W3015043645 @default.
- W4285809711 cites W3016001230 @default.
- W4285809711 cites W3019718479 @default.
- W4285809711 cites W3023206311 @default.
- W4285809711 cites W3033315805 @default.
- W4285809711 cites W3043379777 @default.
- W4285809711 cites W3045435076 @default.
- W4285809711 cites W3045873506 @default.
- W4285809711 cites W3093337177 @default.
- W4285809711 cites W3110389336 @default.
- W4285809711 cites W3111832192 @default.
- W4285809711 cites W3126961813 @default.
- W4285809711 cites W3127524622 @default.
- W4285809711 cites W3132346797 @default.
- W4285809711 cites W3165319124 @default.
- W4285809711 doi "https://doi.org/10.1016/j.echo.2022.07.004" @default.
- W4285809711 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35863542" @default.
- W4285809711 hasPublicationYear "2022" @default.
- W4285809711 type Work @default.
- W4285809711 citedByCount "10" @default.
- W4285809711 countsByYear W42858097112023 @default.
- W4285809711 crossrefType "journal-article" @default.
- W4285809711 hasAuthorship W4285809711A5008668499 @default.
- W4285809711 hasAuthorship W4285809711A5015037291 @default.
- W4285809711 hasAuthorship W4285809711A5015245629 @default.
- W4285809711 hasAuthorship W4285809711A5018100890 @default.
- W4285809711 hasAuthorship W4285809711A5021416774 @default.
- W4285809711 hasAuthorship W4285809711A5022099966 @default.
- W4285809711 hasAuthorship W4285809711A5022538261 @default.
- W4285809711 hasAuthorship W4285809711A5027427175 @default.
- W4285809711 hasAuthorship W4285809711A5028138849 @default.
- W4285809711 hasAuthorship W4285809711A5030723794 @default.
- W4285809711 hasAuthorship W4285809711A5032924551 @default.
- W4285809711 hasAuthorship W4285809711A5043534576 @default.
- W4285809711 hasAuthorship W4285809711A5047755260 @default.
- W4285809711 hasAuthorship W4285809711A5048435993 @default.
- W4285809711 hasAuthorship W4285809711A5049737843 @default.
- W4285809711 hasAuthorship W4285809711A5049765310 @default.
- W4285809711 hasAuthorship W4285809711A5058664452 @default.
- W4285809711 hasAuthorship W4285809711A5065689279 @default.
- W4285809711 hasAuthorship W4285809711A5066856520 @default.
- W4285809711 hasAuthorship W4285809711A5070302668 @default.
- W4285809711 hasAuthorship W4285809711A5085375599 @default.
- W4285809711 hasAuthorship W4285809711A5091698214 @default.
- W4285809711 hasBestOaLocation W42858097112 @default.
- W4285809711 hasConcept C126322002 @default.
- W4285809711 hasConcept C156957248 @default.
- W4285809711 hasConcept C164705383 @default.
- W4285809711 hasConcept C2778198053 @default.
- W4285809711 hasConcept C71924100 @default.
- W4285809711 hasConcept C78085059 @default.
- W4285809711 hasConceptScore W4285809711C126322002 @default.