Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285815456> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4285815456 abstract "Let us begin with Machine learning (ML), which is a type of neural network (AI) that empowers software programmers to start increasing prediction without being done with full to do so. With today's data availability, machine learning techniques are being developed to improve performance and maintenance prediction. Increasing our knowledge of the relationship between humans and algorithms, because data is so valuable, improving strategies for intelligently having to manage the now-ubiquitous content infrastructures is a necessary part of the process toward completely autonomous agents. In a nutshell, deep learning is a subset of machine learning that solves problems that machine learning alone cannot. As numerous academics have proved, automation (ML) in Healthcare is becoming increasingly significant. ML is being used in applications like Electroencephalogram and tumor detection/analysis. Monitoring cardiac rhythms, as well as glucose levels, may be challenging, and even those who are represented at medical institutions. Intermittent heart rate assessments cannot protect against sudden changes in vital signs, and standard techniques of heart rhythm surveillance used in hospitals require patients to be permanently attached to wired apparatus, limiting their mobility." @default.
- W4285815456 created "2022-07-19" @default.
- W4285815456 creator A5002144200 @default.
- W4285815456 creator A5023613989 @default.
- W4285815456 creator A5069022952 @default.
- W4285815456 creator A5080382066 @default.
- W4285815456 creator A5080585811 @default.
- W4285815456 creator A5085990686 @default.
- W4285815456 date "2022-04-28" @default.
- W4285815456 modified "2023-10-17" @default.
- W4285815456 title "A review of Using Deep learning Applications in detecting Cancers at earlier stage" @default.
- W4285815456 cites W1897231229 @default.
- W4285815456 cites W2765329640 @default.
- W4285815456 cites W2769507557 @default.
- W4285815456 cites W2802494476 @default.
- W4285815456 cites W2979729503 @default.
- W4285815456 cites W2981903314 @default.
- W4285815456 cites W3003268084 @default.
- W4285815456 cites W3035821817 @default.
- W4285815456 cites W3071806958 @default.
- W4285815456 cites W3081865003 @default.
- W4285815456 cites W3124321578 @default.
- W4285815456 cites W3127966304 @default.
- W4285815456 cites W3133750713 @default.
- W4285815456 cites W3153045320 @default.
- W4285815456 cites W3199247724 @default.
- W4285815456 cites W3208119029 @default.
- W4285815456 cites W3217248728 @default.
- W4285815456 cites W4243595112 @default.
- W4285815456 doi "https://doi.org/10.1109/icacite53722.2022.9823441" @default.
- W4285815456 hasPublicationYear "2022" @default.
- W4285815456 type Work @default.
- W4285815456 citedByCount "0" @default.
- W4285815456 crossrefType "proceedings-article" @default.
- W4285815456 hasAuthorship W4285815456A5002144200 @default.
- W4285815456 hasAuthorship W4285815456A5023613989 @default.
- W4285815456 hasAuthorship W4285815456A5069022952 @default.
- W4285815456 hasAuthorship W4285815456A5080382066 @default.
- W4285815456 hasAuthorship W4285815456A5080585811 @default.
- W4285815456 hasAuthorship W4285815456A5085990686 @default.
- W4285815456 hasConcept C108583219 @default.
- W4285815456 hasConcept C111919701 @default.
- W4285815456 hasConcept C115901376 @default.
- W4285815456 hasConcept C119857082 @default.
- W4285815456 hasConcept C127413603 @default.
- W4285815456 hasConcept C147168706 @default.
- W4285815456 hasConcept C154945302 @default.
- W4285815456 hasConcept C188198153 @default.
- W4285815456 hasConcept C2777904410 @default.
- W4285815456 hasConcept C41008148 @default.
- W4285815456 hasConcept C50644808 @default.
- W4285815456 hasConcept C78519656 @default.
- W4285815456 hasConcept C98045186 @default.
- W4285815456 hasConceptScore W4285815456C108583219 @default.
- W4285815456 hasConceptScore W4285815456C111919701 @default.
- W4285815456 hasConceptScore W4285815456C115901376 @default.
- W4285815456 hasConceptScore W4285815456C119857082 @default.
- W4285815456 hasConceptScore W4285815456C127413603 @default.
- W4285815456 hasConceptScore W4285815456C147168706 @default.
- W4285815456 hasConceptScore W4285815456C154945302 @default.
- W4285815456 hasConceptScore W4285815456C188198153 @default.
- W4285815456 hasConceptScore W4285815456C2777904410 @default.
- W4285815456 hasConceptScore W4285815456C41008148 @default.
- W4285815456 hasConceptScore W4285815456C50644808 @default.
- W4285815456 hasConceptScore W4285815456C78519656 @default.
- W4285815456 hasConceptScore W4285815456C98045186 @default.
- W4285815456 hasLocation W42858154561 @default.
- W4285815456 hasOpenAccess W4285815456 @default.
- W4285815456 hasPrimaryLocation W42858154561 @default.
- W4285815456 hasRelatedWork W115308 @default.
- W4285815456 hasRelatedWork W12582432 @default.
- W4285815456 hasRelatedWork W13678974 @default.
- W4285815456 hasRelatedWork W2683128 @default.
- W4285815456 hasRelatedWork W7432053 @default.
- W4285815456 hasRelatedWork W8021486 @default.
- W4285815456 hasRelatedWork W8821115 @default.
- W4285815456 hasRelatedWork W9190101 @default.
- W4285815456 hasRelatedWork W9321062 @default.
- W4285815456 hasRelatedWork W2217443 @default.
- W4285815456 isParatext "false" @default.
- W4285815456 isRetracted "false" @default.
- W4285815456 workType "article" @default.