Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285816553> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4285816553 abstract "Nowadays some countries are using advanced traffic light control systems to control the traffic signals in order to ensure smooth travel for road users. Most of the researchers use various methods to identify the density of vehicles using cameras or sensors. Sometimes these roads are occupied by animals to sleep or lie down which disturbs the smooth movement of the vehicles. Due to the occupancy of the animals on the road, traffic also increases, the density of the vehicles may increase and hence there are lots of chances that animals collide with vehicles. Most of the cities are using automatic traffic light control systems. There are no traffic police available to get rid of the animals. Especially in Ethiopia, besides pedestrians, a major number of animals are horses lying down on traffic roads. In this paper, an efficient artificial intelligence NASNetMobile model is proposed to identify the animals on traffic roads and pedestrians using an embedded machine learning system. Further, the system will provide information to the traffic police immediately using short messaging service. Standard Model recognition algorithm based on Convolution Neural Network (CNN) consumes extra computational time in comparison to the training and testing of the model. Transfer Learning is used to specifically adjust the prior models and transfer a standard deep learning model to a specific one with different loads and results. Also, the CNN structure is modified to increase overall functioning, and the traffic environs are trained to the specific scenario. The proposed system has generated test images more than 121,000 images on NASNetMobile architecture consisting even lower number of both true and false pictures and tried out on various images of creatures at junctions. A significant precise value of nearly 86.5% is obtained regarding recognition by utilizing the suggested model." @default.
- W4285816553 created "2022-07-19" @default.
- W4285816553 creator A5010500178 @default.
- W4285816553 creator A5011780911 @default.
- W4285816553 creator A5019663059 @default.
- W4285816553 creator A5024012899 @default.
- W4285816553 creator A5054115578 @default.
- W4285816553 date "2022-04-07" @default.
- W4285816553 modified "2023-09-29" @default.
- W4285816553 title "A Practical Animal Detection and Collision Avoidance System Using Deep Learning Model" @default.
- W4285816553 cites W2035209808 @default.
- W4285816553 cites W2045063000 @default.
- W4285816553 cites W2065101345 @default.
- W4285816553 cites W2101223341 @default.
- W4285816553 cites W2105148880 @default.
- W4285816553 cites W2146628013 @default.
- W4285816553 cites W2321539893 @default.
- W4285816553 cites W2964081807 @default.
- W4285816553 cites W3092154052 @default.
- W4285816553 cites W3097096317 @default.
- W4285816553 doi "https://doi.org/10.1109/i2ct54291.2022.9824594" @default.
- W4285816553 hasPublicationYear "2022" @default.
- W4285816553 type Work @default.
- W4285816553 citedByCount "1" @default.
- W4285816553 countsByYear W42858165532023 @default.
- W4285816553 crossrefType "proceedings-article" @default.
- W4285816553 hasAuthorship W4285816553A5010500178 @default.
- W4285816553 hasAuthorship W4285816553A5011780911 @default.
- W4285816553 hasAuthorship W4285816553A5019663059 @default.
- W4285816553 hasAuthorship W4285816553A5024012899 @default.
- W4285816553 hasAuthorship W4285816553A5054115578 @default.
- W4285816553 hasConcept C108583219 @default.
- W4285816553 hasConcept C119857082 @default.
- W4285816553 hasConcept C121704057 @default.
- W4285816553 hasConcept C150899416 @default.
- W4285816553 hasConcept C154945302 @default.
- W4285816553 hasConcept C2775924081 @default.
- W4285816553 hasConcept C2780864053 @default.
- W4285816553 hasConcept C38652104 @default.
- W4285816553 hasConcept C41008148 @default.
- W4285816553 hasConcept C44154836 @default.
- W4285816553 hasConcept C50644808 @default.
- W4285816553 hasConcept C79403827 @default.
- W4285816553 hasConcept C81363708 @default.
- W4285816553 hasConceptScore W4285816553C108583219 @default.
- W4285816553 hasConceptScore W4285816553C119857082 @default.
- W4285816553 hasConceptScore W4285816553C121704057 @default.
- W4285816553 hasConceptScore W4285816553C150899416 @default.
- W4285816553 hasConceptScore W4285816553C154945302 @default.
- W4285816553 hasConceptScore W4285816553C2775924081 @default.
- W4285816553 hasConceptScore W4285816553C2780864053 @default.
- W4285816553 hasConceptScore W4285816553C38652104 @default.
- W4285816553 hasConceptScore W4285816553C41008148 @default.
- W4285816553 hasConceptScore W4285816553C44154836 @default.
- W4285816553 hasConceptScore W4285816553C50644808 @default.
- W4285816553 hasConceptScore W4285816553C79403827 @default.
- W4285816553 hasConceptScore W4285816553C81363708 @default.
- W4285816553 hasLocation W42858165531 @default.
- W4285816553 hasOpenAccess W4285816553 @default.
- W4285816553 hasPrimaryLocation W42858165531 @default.
- W4285816553 hasRelatedWork W2963958939 @default.
- W4285816553 hasRelatedWork W2997709384 @default.
- W4285816553 hasRelatedWork W3091976719 @default.
- W4285816553 hasRelatedWork W3166467183 @default.
- W4285816553 hasRelatedWork W3173182854 @default.
- W4285816553 hasRelatedWork W3189091156 @default.
- W4285816553 hasRelatedWork W3192840557 @default.
- W4285816553 hasRelatedWork W4288084884 @default.
- W4285816553 hasRelatedWork W4362564549 @default.
- W4285816553 hasRelatedWork W4366224123 @default.
- W4285816553 isParatext "false" @default.
- W4285816553 isRetracted "false" @default.
- W4285816553 workType "article" @default.