Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285816729> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4285816729 abstract "In this era, especially in the pandemic, people and businesses have shifted towards digital platforms from analog ones. These changes have resulted in a blast of information in the marketing sector that needs to be categorized and summarized. Feedback has a significant role in drawing the public towards standard and high-quality products. However, due to the abundance of information, most businesses can’t quickly determine the market value of their products. This is the point where sentimental analysis comes in, which helps in classifying positive and negative feedback. In this paper, the deep learning methods based on CNN and LSTM (Long Short Term Memory) are proposed and trained with the data set from IMDb. In addition, the well-known algorithms of machine learning methods are reviewed based on sentiment analysis. The majority of traditional methods are accurate within a margin of error of 75 to 86 percent. In our experiment, LSTM and CNN showed almost the same accuracy of 89% while the proposed one obtained 92% accuracy. It is evident from the result that, the proposed fusion model outperforms the conventional machine learning algorithms. By deploying the methods with better accuracy, the reviews could be categorized easily and the businesses could stay one step ahead of their competitors." @default.
- W4285816729 created "2022-07-19" @default.
- W4285816729 creator A5002752131 @default.
- W4285816729 creator A5035000135 @default.
- W4285816729 creator A5040493612 @default.
- W4285816729 creator A5064607051 @default.
- W4285816729 date "2022-04-07" @default.
- W4285816729 modified "2023-09-30" @default.
- W4285816729 title "Categorization of Product Feedback using a Deep CNN-based LSTM Model and a Comparative Study of Traditional ML Algorithms" @default.
- W4285816729 cites W2013993544 @default.
- W4285816729 cites W2019759670 @default.
- W4285816729 cites W2080558111 @default.
- W4285816729 cites W2084046180 @default.
- W4285816729 cites W2103063352 @default.
- W4285816729 cites W2108420397 @default.
- W4285816729 cites W2160660844 @default.
- W4285816729 cites W2505144057 @default.
- W4285816729 cites W2584429674 @default.
- W4285816729 cites W3007611478 @default.
- W4285816729 cites W3031389114 @default.
- W4285816729 cites W3033096878 @default.
- W4285816729 cites W3080651448 @default.
- W4285816729 cites W3092005458 @default.
- W4285816729 cites W3093186795 @default.
- W4285816729 cites W3120684843 @default.
- W4285816729 cites W3132950125 @default.
- W4285816729 cites W3213851456 @default.
- W4285816729 cites W4225939240 @default.
- W4285816729 cites W4235312256 @default.
- W4285816729 doi "https://doi.org/10.1109/i2ct54291.2022.9825165" @default.
- W4285816729 hasPublicationYear "2022" @default.
- W4285816729 type Work @default.
- W4285816729 citedByCount "1" @default.
- W4285816729 countsByYear W42858167292023 @default.
- W4285816729 crossrefType "proceedings-article" @default.
- W4285816729 hasAuthorship W4285816729A5002752131 @default.
- W4285816729 hasAuthorship W4285816729A5035000135 @default.
- W4285816729 hasAuthorship W4285816729A5040493612 @default.
- W4285816729 hasAuthorship W4285816729A5064607051 @default.
- W4285816729 hasConcept C108583219 @default.
- W4285816729 hasConcept C111472728 @default.
- W4285816729 hasConcept C11413529 @default.
- W4285816729 hasConcept C119857082 @default.
- W4285816729 hasConcept C127576917 @default.
- W4285816729 hasConcept C138885662 @default.
- W4285816729 hasConcept C144133560 @default.
- W4285816729 hasConcept C154945302 @default.
- W4285816729 hasConcept C162853370 @default.
- W4285816729 hasConcept C2524010 @default.
- W4285816729 hasConcept C2779530757 @default.
- W4285816729 hasConcept C33923547 @default.
- W4285816729 hasConcept C41008148 @default.
- W4285816729 hasConcept C50644808 @default.
- W4285816729 hasConcept C66402592 @default.
- W4285816729 hasConcept C774472 @default.
- W4285816729 hasConcept C90673727 @default.
- W4285816729 hasConcept C94124525 @default.
- W4285816729 hasConceptScore W4285816729C108583219 @default.
- W4285816729 hasConceptScore W4285816729C111472728 @default.
- W4285816729 hasConceptScore W4285816729C11413529 @default.
- W4285816729 hasConceptScore W4285816729C119857082 @default.
- W4285816729 hasConceptScore W4285816729C127576917 @default.
- W4285816729 hasConceptScore W4285816729C138885662 @default.
- W4285816729 hasConceptScore W4285816729C144133560 @default.
- W4285816729 hasConceptScore W4285816729C154945302 @default.
- W4285816729 hasConceptScore W4285816729C162853370 @default.
- W4285816729 hasConceptScore W4285816729C2524010 @default.
- W4285816729 hasConceptScore W4285816729C2779530757 @default.
- W4285816729 hasConceptScore W4285816729C33923547 @default.
- W4285816729 hasConceptScore W4285816729C41008148 @default.
- W4285816729 hasConceptScore W4285816729C50644808 @default.
- W4285816729 hasConceptScore W4285816729C66402592 @default.
- W4285816729 hasConceptScore W4285816729C774472 @default.
- W4285816729 hasConceptScore W4285816729C90673727 @default.
- W4285816729 hasConceptScore W4285816729C94124525 @default.
- W4285816729 hasLocation W42858167291 @default.
- W4285816729 hasOpenAccess W4285816729 @default.
- W4285816729 hasPrimaryLocation W42858167291 @default.
- W4285816729 hasRelatedWork W3014300295 @default.
- W4285816729 hasRelatedWork W3080191145 @default.
- W4285816729 hasRelatedWork W3192794374 @default.
- W4285816729 hasRelatedWork W4223943233 @default.
- W4285816729 hasRelatedWork W4225161397 @default.
- W4285816729 hasRelatedWork W4312200629 @default.
- W4285816729 hasRelatedWork W4360585206 @default.
- W4285816729 hasRelatedWork W4364306694 @default.
- W4285816729 hasRelatedWork W4380075502 @default.
- W4285816729 hasRelatedWork W4380086463 @default.
- W4285816729 isParatext "false" @default.
- W4285816729 isRetracted "false" @default.
- W4285816729 workType "article" @default.