Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285987744> ?p ?o ?g. }
- W4285987744 abstract "The carbon trading market is an effective tool to combat greenhouse gas emissions, and as the core issue of carbon market, carbon price can stimulate the market for technological innovation and industrial transformation. However, the complex characteristics of carbon price such as nonlinearity and nonstationarity bring great challenges to carbon price prediction research. In this study, potential influencing factors of carbon price are introduced into carbon price forecasting, and a novel hybrid carbon price forecasting framework is developed, which contains data decomposition and reconstruction techniques, two-stage feature dimension reduction methods, intelligent and optimized deep learning forecasting with nonlinear integrated models and interval forecasting. Firstly, the carbon price series is decomposed into several simple and smooth subsequences using variational modal decomposition. The stacked autoencoder is then used to extract its effective features and reconstruct them into several new subsequences. A two-stage feature dimension reduction method is utilized for feature selection and extraction of exogenous variables. A bidirectional long and short-term memory model optimized based on the cuckoo search algorithm was used for prediction and nonlinear integration. Finally, Gaussian process regression based on a hybrid kernel function is applied to carbon price interval forecasting. The validity of the model was verified on seven real carbon trading pilot datasets in China. The methodology outperforms all benchmark models in the final simulation results, providing a novel and efficient forecasting method for the carbon trading industry." @default.
- W4285987744 created "2022-07-20" @default.
- W4285987744 creator A5002588126 @default.
- W4285987744 creator A5010776860 @default.
- W4285987744 creator A5032767831 @default.
- W4285987744 creator A5038362153 @default.
- W4285987744 creator A5056453389 @default.
- W4285987744 date "2022-07-20" @default.
- W4285987744 modified "2023-10-11" @default.
- W4285987744 title "An optimized decomposition integration framework for carbon price prediction based on multi-factor two-stage feature dimension reduction" @default.
- W4285987744 cites W1970204203 @default.
- W4285987744 cites W1986421176 @default.
- W4285987744 cites W1986478348 @default.
- W4285987744 cites W2000982976 @default.
- W4285987744 cites W2013097030 @default.
- W4285987744 cites W2019851168 @default.
- W4285987744 cites W2028068740 @default.
- W4285987744 cites W2038096333 @default.
- W4285987744 cites W2039853520 @default.
- W4285987744 cites W2040298412 @default.
- W4285987744 cites W2046611948 @default.
- W4285987744 cites W2060629445 @default.
- W4285987744 cites W2068928057 @default.
- W4285987744 cites W2091391445 @default.
- W4285987744 cites W2116303251 @default.
- W4285987744 cites W2138073346 @default.
- W4285987744 cites W2283370051 @default.
- W4285987744 cites W2339565807 @default.
- W4285987744 cites W2513964223 @default.
- W4285987744 cites W2554966676 @default.
- W4285987744 cites W2586354609 @default.
- W4285987744 cites W2621406380 @default.
- W4285987744 cites W2791205062 @default.
- W4285987744 cites W2801107729 @default.
- W4285987744 cites W2811176969 @default.
- W4285987744 cites W2883138339 @default.
- W4285987744 cites W2890880830 @default.
- W4285987744 cites W2896532220 @default.
- W4285987744 cites W2904390847 @default.
- W4285987744 cites W2905333671 @default.
- W4285987744 cites W2912766632 @default.
- W4285987744 cites W2913219845 @default.
- W4285987744 cites W2946813593 @default.
- W4285987744 cites W2970752452 @default.
- W4285987744 cites W2979028505 @default.
- W4285987744 cites W3003244946 @default.
- W4285987744 cites W3004627076 @default.
- W4285987744 cites W3005888476 @default.
- W4285987744 cites W3036522266 @default.
- W4285987744 cites W3040210718 @default.
- W4285987744 cites W3092281012 @default.
- W4285987744 cites W3095603781 @default.
- W4285987744 cites W3122025866 @default.
- W4285987744 cites W3136633992 @default.
- W4285987744 cites W3136798355 @default.
- W4285987744 cites W3137481883 @default.
- W4285987744 cites W3149223690 @default.
- W4285987744 cites W3156136661 @default.
- W4285987744 cites W3212763014 @default.
- W4285987744 cites W3215163093 @default.
- W4285987744 cites W3215379342 @default.
- W4285987744 cites W4200231892 @default.
- W4285987744 cites W4200496819 @default.
- W4285987744 cites W4205511783 @default.
- W4285987744 cites W4205527244 @default.
- W4285987744 cites W4205943556 @default.
- W4285987744 cites W4214607564 @default.
- W4285987744 cites W4220926989 @default.
- W4285987744 cites W4221035522 @default.
- W4285987744 cites W4223944580 @default.
- W4285987744 cites W4224275571 @default.
- W4285987744 cites W4224281447 @default.
- W4285987744 cites W4225285090 @default.
- W4285987744 doi "https://doi.org/10.1007/s10479-022-04858-2" @default.
- W4285987744 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35875369" @default.
- W4285987744 hasPublicationYear "2022" @default.
- W4285987744 type Work @default.
- W4285987744 citedByCount "6" @default.
- W4285987744 countsByYear W42859877442023 @default.
- W4285987744 crossrefType "journal-article" @default.
- W4285987744 hasAuthorship W4285987744A5002588126 @default.
- W4285987744 hasAuthorship W4285987744A5010776860 @default.
- W4285987744 hasAuthorship W4285987744A5032767831 @default.
- W4285987744 hasAuthorship W4285987744A5038362153 @default.
- W4285987744 hasAuthorship W4285987744A5056453389 @default.
- W4285987744 hasBestOaLocation W42859877441 @default.
- W4285987744 hasConcept C101738243 @default.
- W4285987744 hasConcept C108583219 @default.
- W4285987744 hasConcept C126255220 @default.
- W4285987744 hasConcept C13280743 @default.
- W4285987744 hasConcept C149782125 @default.
- W4285987744 hasConcept C154945302 @default.
- W4285987744 hasConcept C185798385 @default.
- W4285987744 hasConcept C18903297 @default.
- W4285987744 hasConcept C202444582 @default.
- W4285987744 hasConcept C205649164 @default.
- W4285987744 hasConcept C2779200991 @default.
- W4285987744 hasConcept C33676613 @default.
- W4285987744 hasConcept C33923547 @default.
- W4285987744 hasConcept C41008148 @default.