Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286203313> ?p ?o ?g. }
- W4286203313 abstract "Cluster analysis is an integral part of precision medicine and systems biology, used to define groups of patients or biomolecules. Consensus clustering is an ensemble approach that is widely used in these areas, which combines the output from multiple runs of a non-deterministic clustering algorithm. Here we consider the application of consensus clustering to a broad class of heuristic clustering algorithms that can be derived from Bayesian mixture models (and extensions thereof) by adopting an early stopping criterion when performing sampling-based inference for these models. While the resulting approach is non-Bayesian, it inherits the usual benefits of consensus clustering, particularly in terms of computational scalability and providing assessments of clustering stability/robustness.In simulation studies, we show that our approach can successfully uncover the target clustering structure, while also exploring different plausible clusterings of the data. We show that, when a parallel computation environment is available, our approach offers significant reductions in runtime compared to performing sampling-based Bayesian inference for the underlying model, while retaining many of the practical benefits of the Bayesian approach, such as exploring different numbers of clusters. We propose a heuristic to decide upon ensemble size and the early stopping criterion, and then apply consensus clustering to a clustering algorithm derived from a Bayesian integrative clustering method. We use the resulting approach to perform an integrative analysis of three 'omics datasets for budding yeast and find clusters of co-expressed genes with shared regulatory proteins. We validate these clusters using data external to the analysis.Our approach can be used as a wrapper for essentially any existing sampling-based Bayesian clustering implementation, and enables meaningful clustering analyses to be performed using such implementations, even when computational Bayesian inference is not feasible, e.g. due to poor exploration of the target density (often as a result of increasing numbers of features) or a limited computational budget that does not along sufficient samples to drawn from a single chain. This enables researchers to straightforwardly extend the applicability of existing software to much larger datasets, including implementations of sophisticated models such as those that jointly model multiple datasets." @default.
- W4286203313 created "2022-07-21" @default.
- W4286203313 creator A5045193363 @default.
- W4286203313 creator A5061229724 @default.
- W4286203313 creator A5087142542 @default.
- W4286203313 date "2022-07-21" @default.
- W4286203313 modified "2023-10-15" @default.
- W4286203313 title "Consensus clustering for Bayesian mixture models" @default.
- W4286203313 cites W10943164 @default.
- W4286203313 cites W1528242606 @default.
- W4286203313 cites W1548779692 @default.
- W4286203313 cites W160698270 @default.
- W4286203313 cites W1686367817 @default.
- W4286203313 cites W1732489270 @default.
- W4286203313 cites W1967364632 @default.
- W4286203313 cites W1967687583 @default.
- W4286203313 cites W1983412918 @default.
- W4286203313 cites W1987971958 @default.
- W4286203313 cites W1998653901 @default.
- W4286203313 cites W2011832962 @default.
- W4286203313 cites W2026882865 @default.
- W4286203313 cites W2038885294 @default.
- W4286203313 cites W2041763398 @default.
- W4286203313 cites W2047555270 @default.
- W4286203313 cites W2047708805 @default.
- W4286203313 cites W2059234619 @default.
- W4286203313 cites W2062373184 @default.
- W4286203313 cites W2062723323 @default.
- W4286203313 cites W2065392216 @default.
- W4286203313 cites W2070493638 @default.
- W4286203313 cites W2071444608 @default.
- W4286203313 cites W2073506826 @default.
- W4286203313 cites W2078313470 @default.
- W4286203313 cites W2080498142 @default.
- W4286203313 cites W2083942911 @default.
- W4286203313 cites W2089468765 @default.
- W4286203313 cites W2089609272 @default.
- W4286203313 cites W2095763169 @default.
- W4286203313 cites W2115462905 @default.
- W4286203313 cites W2123712380 @default.
- W4286203313 cites W2124061292 @default.
- W4286203313 cites W2134539328 @default.
- W4286203313 cites W2141599838 @default.
- W4286203313 cites W2143384329 @default.
- W4286203313 cites W2145573077 @default.
- W4286203313 cites W2146488831 @default.
- W4286203313 cites W2147524392 @default.
- W4286203313 cites W2148534890 @default.
- W4286203313 cites W2150473224 @default.
- W4286203313 cites W2150593711 @default.
- W4286203313 cites W2150750144 @default.
- W4286203313 cites W2152414953 @default.
- W4286203313 cites W2156716434 @default.
- W4286203313 cites W2161289668 @default.
- W4286203313 cites W2162021827 @default.
- W4286203313 cites W2163485494 @default.
- W4286203313 cites W2168175751 @default.
- W4286203313 cites W2171767878 @default.
- W4286203313 cites W2305001871 @default.
- W4286203313 cites W2460637143 @default.
- W4286203313 cites W2519132385 @default.
- W4286203313 cites W2562162676 @default.
- W4286203313 cites W2598326928 @default.
- W4286203313 cites W2785648173 @default.
- W4286203313 cites W2804810839 @default.
- W4286203313 cites W2807006342 @default.
- W4286203313 cites W2898911827 @default.
- W4286203313 cites W2911429292 @default.
- W4286203313 cites W2911964244 @default.
- W4286203313 cites W2949127449 @default.
- W4286203313 cites W2950044218 @default.
- W4286203313 cites W2963627717 @default.
- W4286203313 cites W2964036097 @default.
- W4286203313 cites W2964255467 @default.
- W4286203313 cites W2981012493 @default.
- W4286203313 cites W3005420916 @default.
- W4286203313 cites W3010567980 @default.
- W4286203313 cites W3022264239 @default.
- W4286203313 cites W3099663651 @default.
- W4286203313 cites W3100688298 @default.
- W4286203313 cites W3110470384 @default.
- W4286203313 cites W3122858766 @default.
- W4286203313 cites W3155745390 @default.
- W4286203313 cites W3161115020 @default.
- W4286203313 cites W3212048807 @default.
- W4286203313 cites W337688904 @default.
- W4286203313 cites W4229977739 @default.
- W4286203313 cites W4235094695 @default.
- W4286203313 cites W4235169531 @default.
- W4286203313 cites W4238062543 @default.
- W4286203313 doi "https://doi.org/10.1186/s12859-022-04830-8" @default.
- W4286203313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35864476" @default.
- W4286203313 hasPublicationYear "2022" @default.
- W4286203313 type Work @default.
- W4286203313 citedByCount "6" @default.
- W4286203313 countsByYear W42862033132023 @default.
- W4286203313 crossrefType "journal-article" @default.
- W4286203313 hasAuthorship W4286203313A5045193363 @default.
- W4286203313 hasAuthorship W4286203313A5061229724 @default.
- W4286203313 hasAuthorship W4286203313A5087142542 @default.