Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286206415> ?p ?o ?g. }
- W4286206415 endingPage "113172" @default.
- W4286206415 startingPage "113172" @default.
- W4286206415 abstract "Anthropogenic carbon emissions directly contribute to global warming, which has induced severe environmental concerns like extreme droughts and devastating fires. To evaluate the effects of fires on carbon cycling and climate change, it is crucial to accurately estimate the amount of carbon released during fires. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission offers spaceborne light detection and ranging (LiDAR) measurements of global forests, providing excellent opportunities for monitoring forest dynamics and carbon emissions. The ICESat-2 Land and vegetation height product (ATL08), Landsat 8 data, and Sentinel-1 data were integrated to estimate biomass burning emissions with a three-phase hierarchy model. In Phase 1, the least absolute shrinkage and selection operator (LASSO) regression was used to establish the relationship between ATL08 LiDAR metrics and reference aboveground biomass (AGB), R 2 0.77 and RMSE 56.67 Mg ha −1 . In Phase 2, the LASSO regression predicted AGB for all ATL08 segments. A Random Forest Regression model was trained with Landsat 8 reflectance data and derived vegetation indices, Sentinel-1 data, and terrain variables as predictors and with the LASSO predicted AGB as the response variable, R 2 0.71 and RMSE 45.91 Mg ha −1 . Wall-to-wall maps of pre-fire and post-fire AGB were produced with the Random Forest model. In Phase 3, the difference between the pre-fire and the post-fire AGB was converted to carbon emissions. The estimated biomass burning emissions of the 2018 Carr fire group, the 2018 Camp fire, and the 2019 Walker fire in California are 3.54 (± 0.067) Tg C, 1.66 (± 0.041) Tg C, and 0.45 (± 0.022) Tg C, respectively. Forests have the highest biomass burning emissions with an average emission of 30.09 Mg ha −1 , approximately twice and four times the average emissions from shrubs and grasses. This study highlights the merit of integrating spaceborne remote sensing data, including LiDAR data, optical data, and radar data, for estimating biomass burning emissions, opening an avenue for accurate forest biomass and carbon dynamics monitoring, as well as climate change mitigation. • Multi-source spaceborne data were integrated to estimate carbon emissions of fires • A hierarchy model was proposed to estimate biomass and carbon emissions • ICESat-2 strong beams are superior in biomass estimation compared with weak beams • Forests have higher biomass burning emissions than shrubs and grasses" @default.
- W4286206415 created "2022-07-21" @default.
- W4286206415 creator A5000562385 @default.
- W4286206415 creator A5015263215 @default.
- W4286206415 date "2022-10-01" @default.
- W4286206415 modified "2023-10-14" @default.
- W4286206415 title "Estimation of biomass burning emissions by integrating ICESat-2, Landsat 8, and Sentinel-1 data" @default.
- W4286206415 cites W1882820620 @default.
- W4286206415 cites W1977269158 @default.
- W4286206415 cites W2014446516 @default.
- W4286206415 cites W2050161380 @default.
- W4286206415 cites W2057346655 @default.
- W4286206415 cites W2075641736 @default.
- W4286206415 cites W2083179912 @default.
- W4286206415 cites W2087731647 @default.
- W4286206415 cites W2093540905 @default.
- W4286206415 cites W2097947367 @default.
- W4286206415 cites W2098938043 @default.
- W4286206415 cites W2105770001 @default.
- W4286206415 cites W2109631166 @default.
- W4286206415 cites W2117966692 @default.
- W4286206415 cites W2127354426 @default.
- W4286206415 cites W2131491776 @default.
- W4286206415 cites W2135046866 @default.
- W4286206415 cites W2151549592 @default.
- W4286206415 cites W2155039075 @default.
- W4286206415 cites W2156281392 @default.
- W4286206415 cites W2162344718 @default.
- W4286206415 cites W2167787089 @default.
- W4286206415 cites W2169103225 @default.
- W4286206415 cites W2171210136 @default.
- W4286206415 cites W2261059368 @default.
- W4286206415 cites W2568967893 @default.
- W4286206415 cites W2573821892 @default.
- W4286206415 cites W2580337091 @default.
- W4286206415 cites W2593972424 @default.
- W4286206415 cites W2603028033 @default.
- W4286206415 cites W2604271816 @default.
- W4286206415 cites W2610639429 @default.
- W4286206415 cites W2610813618 @default.
- W4286206415 cites W2765343078 @default.
- W4286206415 cites W2769017485 @default.
- W4286206415 cites W2788697735 @default.
- W4286206415 cites W2883666593 @default.
- W4286206415 cites W2887685367 @default.
- W4286206415 cites W2890942070 @default.
- W4286206415 cites W2891782712 @default.
- W4286206415 cites W2901674962 @default.
- W4286206415 cites W2911964244 @default.
- W4286206415 cites W2912041037 @default.
- W4286206415 cites W2993298202 @default.
- W4286206415 cites W2998105145 @default.
- W4286206415 cites W3035803741 @default.
- W4286206415 cites W3055975969 @default.
- W4286206415 cites W3090942236 @default.
- W4286206415 cites W3091428573 @default.
- W4286206415 cites W3178577652 @default.
- W4286206415 cites W4200341517 @default.
- W4286206415 cites W4210304451 @default.
- W4286206415 cites W4212928976 @default.
- W4286206415 doi "https://doi.org/10.1016/j.rse.2022.113172" @default.
- W4286206415 hasPublicationYear "2022" @default.
- W4286206415 type Work @default.
- W4286206415 citedByCount "4" @default.
- W4286206415 countsByYear W42862064152023 @default.
- W4286206415 crossrefType "journal-article" @default.
- W4286206415 hasAuthorship W4286206415A5000562385 @default.
- W4286206415 hasAuthorship W4286206415A5015263215 @default.
- W4286206415 hasBestOaLocation W42862064151 @default.
- W4286206415 hasConcept C111368507 @default.
- W4286206415 hasConcept C115540264 @default.
- W4286206415 hasConcept C127313418 @default.
- W4286206415 hasConcept C153294291 @default.
- W4286206415 hasConcept C205649164 @default.
- W4286206415 hasConcept C2779345167 @default.
- W4286206415 hasConcept C3019268976 @default.
- W4286206415 hasConcept C39432304 @default.
- W4286206415 hasConcept C62649853 @default.
- W4286206415 hasConceptScore W4286206415C111368507 @default.
- W4286206415 hasConceptScore W4286206415C115540264 @default.
- W4286206415 hasConceptScore W4286206415C127313418 @default.
- W4286206415 hasConceptScore W4286206415C153294291 @default.
- W4286206415 hasConceptScore W4286206415C205649164 @default.
- W4286206415 hasConceptScore W4286206415C2779345167 @default.
- W4286206415 hasConceptScore W4286206415C3019268976 @default.
- W4286206415 hasConceptScore W4286206415C39432304 @default.
- W4286206415 hasConceptScore W4286206415C62649853 @default.
- W4286206415 hasLocation W42862064151 @default.
- W4286206415 hasOpenAccess W4286206415 @default.
- W4286206415 hasPrimaryLocation W42862064151 @default.
- W4286206415 hasRelatedWork W1975591846 @default.
- W4286206415 hasRelatedWork W2021765542 @default.
- W4286206415 hasRelatedWork W2037995797 @default.
- W4286206415 hasRelatedWork W2070484211 @default.
- W4286206415 hasRelatedWork W2089738199 @default.
- W4286206415 hasRelatedWork W2294409460 @default.
- W4286206415 hasRelatedWork W2358901241 @default.
- W4286206415 hasRelatedWork W2365426866 @default.