Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286219225> ?p ?o ?g. }
- W4286219225 endingPage "10" @default.
- W4286219225 startingPage "1" @default.
- W4286219225 abstract "This paper proposes a fuzzy combined kernel relevance vector machine method for the coal spontaneous combustion temperature prediction to avoid the shortcomings of traditional machine learning algorithms, such as the large prediction error, the weak generalization ability of the single kernel function, and the inability to deal with abnormal values. First, build a platform to simulate the coal spontaneous combustion scene and obtain the data of different index gas concentrations and the coal spontaneous combustion temperature through experiments. Second, the fuzzy algorithm is used to give the training samples different membership degrees with attention, so as to reduce the influence of outliers on the model. Third, the combined kernel function weighted by the polynomial kernel function and Gaussian kernel function is used to construct the input sample matrix to map the data from the low-dimensional space to a high-dimensional space, so as to obtain a better training model. Finally, the fuzzy combined kernel relevance vector machine model is constructed and compared with methods based on the radial basis function neural network, least squares support vector machine, Gaussian kernel relevance vector machine, and combined kernel relevance vector machine to verify the effectiveness of prediction for coal spontaneous combustion temperature. The results show that the fuzzy combined kernel relevance vector machine not only has the characteristics of strong generalization ability and weakening the influence of abnormal data, but also with a more sparse model, which is suitable for the prediction of coal spontaneous combustion temperature." @default.
- W4286219225 created "2022-07-21" @default.
- W4286219225 creator A5005163892 @default.
- W4286219225 creator A5012971057 @default.
- W4286219225 creator A5068795685 @default.
- W4286219225 date "2022-07-19" @default.
- W4286219225 modified "2023-10-14" @default.
- W4286219225 title "Coal Spontaneous Combustion Temperature Prediction Based on Fuzzy Combined Kernel Relevance Vector Machine" @default.
- W4286219225 cites W2055202575 @default.
- W4286219225 cites W2085129259 @default.
- W4286219225 cites W2403873654 @default.
- W4286219225 cites W2475324027 @default.
- W4286219225 cites W2585640485 @default.
- W4286219225 cites W2610935019 @default.
- W4286219225 cites W2752892019 @default.
- W4286219225 cites W2789845700 @default.
- W4286219225 cites W2799310842 @default.
- W4286219225 cites W2807022326 @default.
- W4286219225 cites W2897787625 @default.
- W4286219225 cites W2906779778 @default.
- W4286219225 cites W2906949176 @default.
- W4286219225 cites W2909580881 @default.
- W4286219225 cites W2944937715 @default.
- W4286219225 cites W2953232460 @default.
- W4286219225 cites W2973843106 @default.
- W4286219225 cites W2978449012 @default.
- W4286219225 cites W3009699911 @default.
- W4286219225 cites W3012264837 @default.
- W4286219225 cites W3088980829 @default.
- W4286219225 cites W3101793300 @default.
- W4286219225 cites W3112167241 @default.
- W4286219225 cites W3158453437 @default.
- W4286219225 cites W3215934999 @default.
- W4286219225 cites W4293150378 @default.
- W4286219225 doi "https://doi.org/10.1155/2022/1724506" @default.
- W4286219225 hasPublicationYear "2022" @default.
- W4286219225 type Work @default.
- W4286219225 citedByCount "0" @default.
- W4286219225 crossrefType "journal-article" @default.
- W4286219225 hasAuthorship W4286219225A5005163892 @default.
- W4286219225 hasAuthorship W4286219225A5012971057 @default.
- W4286219225 hasAuthorship W4286219225A5068795685 @default.
- W4286219225 hasBestOaLocation W42862192251 @default.
- W4286219225 hasConcept C11413529 @default.
- W4286219225 hasConcept C114614502 @default.
- W4286219225 hasConcept C119857082 @default.
- W4286219225 hasConcept C122280245 @default.
- W4286219225 hasConcept C12267149 @default.
- W4286219225 hasConcept C134306372 @default.
- W4286219225 hasConcept C145828037 @default.
- W4286219225 hasConcept C147597530 @default.
- W4286219225 hasConcept C14948415 @default.
- W4286219225 hasConcept C153180895 @default.
- W4286219225 hasConcept C154945302 @default.
- W4286219225 hasConcept C160446489 @default.
- W4286219225 hasConcept C163716315 @default.
- W4286219225 hasConcept C177148314 @default.
- W4286219225 hasConcept C185592680 @default.
- W4286219225 hasConcept C195699287 @default.
- W4286219225 hasConcept C33923547 @default.
- W4286219225 hasConcept C41008148 @default.
- W4286219225 hasConcept C7218915 @default.
- W4286219225 hasConcept C74193536 @default.
- W4286219225 hasConcept C75866337 @default.
- W4286219225 hasConceptScore W4286219225C11413529 @default.
- W4286219225 hasConceptScore W4286219225C114614502 @default.
- W4286219225 hasConceptScore W4286219225C119857082 @default.
- W4286219225 hasConceptScore W4286219225C122280245 @default.
- W4286219225 hasConceptScore W4286219225C12267149 @default.
- W4286219225 hasConceptScore W4286219225C134306372 @default.
- W4286219225 hasConceptScore W4286219225C145828037 @default.
- W4286219225 hasConceptScore W4286219225C147597530 @default.
- W4286219225 hasConceptScore W4286219225C14948415 @default.
- W4286219225 hasConceptScore W4286219225C153180895 @default.
- W4286219225 hasConceptScore W4286219225C154945302 @default.
- W4286219225 hasConceptScore W4286219225C160446489 @default.
- W4286219225 hasConceptScore W4286219225C163716315 @default.
- W4286219225 hasConceptScore W4286219225C177148314 @default.
- W4286219225 hasConceptScore W4286219225C185592680 @default.
- W4286219225 hasConceptScore W4286219225C195699287 @default.
- W4286219225 hasConceptScore W4286219225C33923547 @default.
- W4286219225 hasConceptScore W4286219225C41008148 @default.
- W4286219225 hasConceptScore W4286219225C7218915 @default.
- W4286219225 hasConceptScore W4286219225C74193536 @default.
- W4286219225 hasConceptScore W4286219225C75866337 @default.
- W4286219225 hasFunder F4320336350 @default.
- W4286219225 hasLocation W42862192251 @default.
- W4286219225 hasOpenAccess W4286219225 @default.
- W4286219225 hasPrimaryLocation W42862192251 @default.
- W4286219225 hasRelatedWork W1661924774 @default.
- W4286219225 hasRelatedWork W1924599836 @default.
- W4286219225 hasRelatedWork W1927531272 @default.
- W4286219225 hasRelatedWork W2005263400 @default.
- W4286219225 hasRelatedWork W2140869420 @default.
- W4286219225 hasRelatedWork W2357150443 @default.
- W4286219225 hasRelatedWork W2361876834 @default.
- W4286219225 hasRelatedWork W2382704364 @default.
- W4286219225 hasRelatedWork W2990904699 @default.