Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286221696> ?p ?o ?g. }
- W4286221696 endingPage "e34464" @default.
- W4286221696 startingPage "e34464" @default.
- W4286221696 abstract "Internet search volume for medical information, as tracked by Google Trends, has been used to demonstrate unexpected seasonality in the symptom burden of a variety of medical conditions. However, when more technical medical language is used (eg, diagnoses), we believe that this technique is confounded by the cyclic, school year-driven internet search patterns of health care students.This study aimed to (1) demonstrate that artificial academic cycling of Google Trends' search volume is present in many health care terms, (2) demonstrate how signal processing techniques can be used to filter academic cycling out of Google Trends data, and (3) apply this filtering technique to some clinically relevant examples.We obtained the Google Trends search volume data for a variety of academic terms demonstrating strong academic cycling and used a Fourier analysis technique to (1) identify the frequency domain fingerprint of this modulating pattern in one particularly strong example, and (2) filter that pattern out of the original data. After this illustrative example, we then applied the same filtering technique to internet searches for information on 3 medical conditions believed to have true seasonal modulation (myocardial infarction, hypertension, and depression), and all bacterial genus terms within a common medical microbiology textbook.Academic cycling explains much of the seasonal variation in internet search volume for many technically oriented search terms, including the bacterial genus term [Staphylococcus], for which academic cycling explained 73.8% of the variability in search volume (using the squared Spearman rank correlation coefficient, P<.001). Of the 56 bacterial genus terms examined, 6 displayed sufficiently strong seasonality to warrant further examination post filtering. This included (1) [Aeromonas + Plesiomonas] (nosocomial infections that were searched for more frequently during the summer), (2) [Ehrlichia] (a tick-borne pathogen that was searched for more frequently during late spring), (3) [Moraxella] and [Haemophilus] (respiratory infections that were searched for more frequently during late winter), (4) [Legionella] (searched for more frequently during midsummer), and (5) [Vibrio] (which spiked for 2 months during midsummer). The terms [myocardial infarction] and [hypertension] lacked any obvious seasonal cycling after filtering, whereas [depression] maintained an annual cycling pattern.Although it is reasonable to search for seasonal modulation of medical conditions using Google Trends' internet search volume and lay-appropriate search terms, the variation in more technical search terms may be driven by health care students whose search frequency varies with the academic school year. When this is the case, using Fourier analysis to filter out academic cycling is a potential means to establish whether additional seasonality is present." @default.
- W4286221696 created "2022-07-21" @default.
- W4286221696 creator A5060212629 @default.
- W4286221696 creator A5069627004 @default.
- W4286221696 date "2022-07-19" @default.
- W4286221696 modified "2023-09-28" @default.
- W4286221696 title "Confounding Effect of Undergraduate Semester–Driven “Academic Internet Searches on the Ability to Detect True Disease Seasonality in Google Trends Data: Fourier Filter Method Development and Demonstration" @default.
- W4286221696 cites W1536532709 @default.
- W4286221696 cites W176336301 @default.
- W4286221696 cites W1979764658 @default.
- W4286221696 cites W1984926150 @default.
- W4286221696 cites W1992458615 @default.
- W4286221696 cites W2035608590 @default.
- W4286221696 cites W2061171222 @default.
- W4286221696 cites W2080630525 @default.
- W4286221696 cites W2106788917 @default.
- W4286221696 cites W2114060717 @default.
- W4286221696 cites W2114230903 @default.
- W4286221696 cites W2116148325 @default.
- W4286221696 cites W2117239687 @default.
- W4286221696 cites W2129423303 @default.
- W4286221696 cites W2130094219 @default.
- W4286221696 cites W2148852694 @default.
- W4286221696 cites W2170148907 @default.
- W4286221696 cites W2187848245 @default.
- W4286221696 cites W2238293141 @default.
- W4286221696 cites W2293998953 @default.
- W4286221696 cites W2499358136 @default.
- W4286221696 cites W2529900371 @default.
- W4286221696 cites W2576264194 @default.
- W4286221696 cites W2623866723 @default.
- W4286221696 cites W2624604182 @default.
- W4286221696 cites W2628171625 @default.
- W4286221696 cites W2781574992 @default.
- W4286221696 cites W2894750199 @default.
- W4286221696 cites W2904533531 @default.
- W4286221696 cites W2912066166 @default.
- W4286221696 cites W2962340438 @default.
- W4286221696 cites W2963830405 @default.
- W4286221696 cites W2973177232 @default.
- W4286221696 cites W2981399361 @default.
- W4286221696 cites W3010940342 @default.
- W4286221696 cites W3018678377 @default.
- W4286221696 cites W3104807753 @default.
- W4286221696 cites W3128882466 @default.
- W4286221696 cites W3181493438 @default.
- W4286221696 cites W3210373867 @default.
- W4286221696 doi "https://doi.org/10.2196/34464" @default.
- W4286221696 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37113451" @default.
- W4286221696 hasPublicationYear "2022" @default.
- W4286221696 type Work @default.
- W4286221696 citedByCount "2" @default.
- W4286221696 countsByYear W42862216962023 @default.
- W4286221696 crossrefType "journal-article" @default.
- W4286221696 hasAuthorship W4286221696A5060212629 @default.
- W4286221696 hasAuthorship W4286221696A5069627004 @default.
- W4286221696 hasBestOaLocation W42862216961 @default.
- W4286221696 hasConcept C105795698 @default.
- W4286221696 hasConcept C106131492 @default.
- W4286221696 hasConcept C110875604 @default.
- W4286221696 hasConcept C136197465 @default.
- W4286221696 hasConcept C136764020 @default.
- W4286221696 hasConcept C154945302 @default.
- W4286221696 hasConcept C23123220 @default.
- W4286221696 hasConcept C2522767166 @default.
- W4286221696 hasConcept C31972630 @default.
- W4286221696 hasConcept C33923547 @default.
- W4286221696 hasConcept C41008148 @default.
- W4286221696 hasConcept C71924100 @default.
- W4286221696 hasConcept C77350462 @default.
- W4286221696 hasConceptScore W4286221696C105795698 @default.
- W4286221696 hasConceptScore W4286221696C106131492 @default.
- W4286221696 hasConceptScore W4286221696C110875604 @default.
- W4286221696 hasConceptScore W4286221696C136197465 @default.
- W4286221696 hasConceptScore W4286221696C136764020 @default.
- W4286221696 hasConceptScore W4286221696C154945302 @default.
- W4286221696 hasConceptScore W4286221696C23123220 @default.
- W4286221696 hasConceptScore W4286221696C2522767166 @default.
- W4286221696 hasConceptScore W4286221696C31972630 @default.
- W4286221696 hasConceptScore W4286221696C33923547 @default.
- W4286221696 hasConceptScore W4286221696C41008148 @default.
- W4286221696 hasConceptScore W4286221696C71924100 @default.
- W4286221696 hasConceptScore W4286221696C77350462 @default.
- W4286221696 hasIssue "2" @default.
- W4286221696 hasLocation W42862216961 @default.
- W4286221696 hasLocation W42862216962 @default.
- W4286221696 hasLocation W42862216963 @default.
- W4286221696 hasOpenAccess W4286221696 @default.
- W4286221696 hasPrimaryLocation W42862216961 @default.
- W4286221696 hasRelatedWork W1534739252 @default.
- W4286221696 hasRelatedWork W2048289471 @default.
- W4286221696 hasRelatedWork W2086064646 @default.
- W4286221696 hasRelatedWork W2115485936 @default.
- W4286221696 hasRelatedWork W2119135658 @default.
- W4286221696 hasRelatedWork W2357241418 @default.
- W4286221696 hasRelatedWork W2748952813 @default.
- W4286221696 hasRelatedWork W2753379398 @default.
- W4286221696 hasRelatedWork W2899084033 @default.