Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286229237> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4286229237 abstract "Debugging performance anomalies in real-world databases is challenging. Causal inference techniques enable qualitative and quantitative root cause analysis of performance downgrade. Nevertheless, causality analysis is practically challenging, particularly due to limited observability. Recently, chaos engineering has been applied to test complex real-world software systems. Chaos frameworks like Chaos Mesh mutate a set of chaos variables to inject catastrophic events (e.g., network slowdowns) to stress software systems. The systems under chaos stress are then tested using methods like differential testing to check if they retain their normal functionality (e.g., SQL query output is always correct under stress). Despite its ubiquity in the industry, chaos engineering is now employed mostly to aid software testing rather for performance debugging. This paper identifies novel usage of chaos engineering on helping developers diagnose performance anomalies in databases. Our presented framework, PERFCE, comprises an offline phase and an online phase. The offline phase learns the statistical models of the target database system, whilst the online phase diagnoses the root cause of monitored performance anomalies on the fly. During the offline phase, PERFCE leverages both passive observations and proactive chaos experiments to constitute accurate causal graphs and structural equation models (SEMs). When observing performance anomalies during the online phase, causal graphs enable qualitative root cause identification (e.g., high CPU usage) and SEMs enable quantitative counterfactual analysis (e.g., determining when CPU usage is reduced to 45%, performance returns to normal). PERFCE notably outperforms prior works on common synthetic datasets, and our evaluation on real-world databases, MySQL and TiDB, shows that PERFCE is highly accurate and moderately expensive." @default.
- W4286229237 created "2022-07-21" @default.
- W4286229237 creator A5006901857 @default.
- W4286229237 creator A5048399617 @default.
- W4286229237 creator A5072001009 @default.
- W4286229237 date "2022-07-18" @default.
- W4286229237 modified "2023-09-26" @default.
- W4286229237 title "PerfCE: Performance Debugging on Databases with Chaos Engineering-Enhanced Causality Analysis" @default.
- W4286229237 doi "https://doi.org/10.48550/arxiv.2207.08369" @default.
- W4286229237 hasPublicationYear "2022" @default.
- W4286229237 type Work @default.
- W4286229237 citedByCount "0" @default.
- W4286229237 crossrefType "posted-content" @default.
- W4286229237 hasAuthorship W4286229237A5006901857 @default.
- W4286229237 hasAuthorship W4286229237A5048399617 @default.
- W4286229237 hasAuthorship W4286229237A5072001009 @default.
- W4286229237 hasBestOaLocation W42862292371 @default.
- W4286229237 hasConcept C111919701 @default.
- W4286229237 hasConcept C124101348 @default.
- W4286229237 hasConcept C127413603 @default.
- W4286229237 hasConcept C13280743 @default.
- W4286229237 hasConcept C168065819 @default.
- W4286229237 hasConcept C185798385 @default.
- W4286229237 hasConcept C199360897 @default.
- W4286229237 hasConcept C200601418 @default.
- W4286229237 hasConcept C205649164 @default.
- W4286229237 hasConcept C2777904410 @default.
- W4286229237 hasConcept C2779374083 @default.
- W4286229237 hasConcept C41008148 @default.
- W4286229237 hasConcept C84945661 @default.
- W4286229237 hasConceptScore W4286229237C111919701 @default.
- W4286229237 hasConceptScore W4286229237C124101348 @default.
- W4286229237 hasConceptScore W4286229237C127413603 @default.
- W4286229237 hasConceptScore W4286229237C13280743 @default.
- W4286229237 hasConceptScore W4286229237C168065819 @default.
- W4286229237 hasConceptScore W4286229237C185798385 @default.
- W4286229237 hasConceptScore W4286229237C199360897 @default.
- W4286229237 hasConceptScore W4286229237C200601418 @default.
- W4286229237 hasConceptScore W4286229237C205649164 @default.
- W4286229237 hasConceptScore W4286229237C2777904410 @default.
- W4286229237 hasConceptScore W4286229237C2779374083 @default.
- W4286229237 hasConceptScore W4286229237C41008148 @default.
- W4286229237 hasConceptScore W4286229237C84945661 @default.
- W4286229237 hasLocation W42862292371 @default.
- W4286229237 hasOpenAccess W4286229237 @default.
- W4286229237 hasPrimaryLocation W42862292371 @default.
- W4286229237 hasRelatedWork W1483845062 @default.
- W4286229237 hasRelatedWork W1578053891 @default.
- W4286229237 hasRelatedWork W1987935534 @default.
- W4286229237 hasRelatedWork W2120071210 @default.
- W4286229237 hasRelatedWork W2565372054 @default.
- W4286229237 hasRelatedWork W3134796670 @default.
- W4286229237 hasRelatedWork W3161130147 @default.
- W4286229237 hasRelatedWork W3194833114 @default.
- W4286229237 hasRelatedWork W4205868343 @default.
- W4286229237 hasRelatedWork W4287282609 @default.
- W4286229237 isParatext "false" @default.
- W4286229237 isRetracted "false" @default.
- W4286229237 workType "article" @default.