Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286248445> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4286248445 abstract "Unmanned aerial vehicles or drones are ubiquitous among people, which can lead to technological, security, and community safety issues that must be addressed, monitored, and avoided. Intelligence services are always on the search for potential technology and intelligent systems that can identify drones. A potential drone surveillance system must be capable of detecting, localizing, identifying, recognizing the modes, and combating unauthorized drones. In this paper, we introduce a Multi-Task Learning (MTL) neural network for drone detection, identification, and drone mode detection using Radio Frequency (RF) signals. Due to the semantic abstraction of the drone RF signals, a single-task learning method can not fully meet the demands of the current anti-drone system. Moreover, executing each of the tasks, such as drone detection, type identification, and activity recognition, individually takes longer time, which is not applicable in a real-time drone surveillance system. Therefore, this paper proposes an MTL approach leveraging convolution layers to perform three tasks in parallel. A cross-entropy loss function used as the objective function optimization to improve the accuracy of the multiple tasks. The empirical results shows that the proposed MTL model achieve a better recognition accuracy compared to the existing solutions." @default.
- W4286248445 created "2022-07-21" @default.
- W4286248445 creator A5019789320 @default.
- W4286248445 creator A5035179778 @default.
- W4286248445 creator A5087812213 @default.
- W4286248445 creator A5091866915 @default.
- W4286248445 date "2022-07-05" @default.
- W4286248445 modified "2023-10-02" @default.
- W4286248445 title "An Explainable Multi-Task Learning Approach for RF-based UAV Surveillance Systems" @default.
- W4286248445 cites W1964376493 @default.
- W4286248445 cites W2183341477 @default.
- W4286248445 cites W2185914885 @default.
- W4286248445 cites W2194775991 @default.
- W4286248445 cites W2520146394 @default.
- W4286248445 cites W2566925314 @default.
- W4286248445 cites W2731587879 @default.
- W4286248445 cites W2808360995 @default.
- W4286248445 cites W2891735075 @default.
- W4286248445 cites W2944086006 @default.
- W4286248445 cites W2963430933 @default.
- W4286248445 cites W2976792973 @default.
- W4286248445 cites W3025996032 @default.
- W4286248445 cites W3117165168 @default.
- W4286248445 cites W3199886050 @default.
- W4286248445 cites W3201542739 @default.
- W4286248445 cites W3206953734 @default.
- W4286248445 cites W4200228699 @default.
- W4286248445 cites W4210370218 @default.
- W4286248445 cites W4285305536 @default.
- W4286248445 doi "https://doi.org/10.1109/icufn55119.2022.9829629" @default.
- W4286248445 hasPublicationYear "2022" @default.
- W4286248445 type Work @default.
- W4286248445 citedByCount "1" @default.
- W4286248445 countsByYear W42862484452023 @default.
- W4286248445 crossrefType "proceedings-article" @default.
- W4286248445 hasAuthorship W4286248445A5019789320 @default.
- W4286248445 hasAuthorship W4286248445A5035179778 @default.
- W4286248445 hasAuthorship W4286248445A5087812213 @default.
- W4286248445 hasAuthorship W4286248445A5091866915 @default.
- W4286248445 hasConcept C107457646 @default.
- W4286248445 hasConcept C108583219 @default.
- W4286248445 hasConcept C116834253 @default.
- W4286248445 hasConcept C119857082 @default.
- W4286248445 hasConcept C127413603 @default.
- W4286248445 hasConcept C154945302 @default.
- W4286248445 hasConcept C201995342 @default.
- W4286248445 hasConcept C2780451532 @default.
- W4286248445 hasConcept C38652104 @default.
- W4286248445 hasConcept C41008148 @default.
- W4286248445 hasConcept C54355233 @default.
- W4286248445 hasConcept C59519942 @default.
- W4286248445 hasConcept C59822182 @default.
- W4286248445 hasConcept C79403827 @default.
- W4286248445 hasConcept C81363708 @default.
- W4286248445 hasConcept C86803240 @default.
- W4286248445 hasConceptScore W4286248445C107457646 @default.
- W4286248445 hasConceptScore W4286248445C108583219 @default.
- W4286248445 hasConceptScore W4286248445C116834253 @default.
- W4286248445 hasConceptScore W4286248445C119857082 @default.
- W4286248445 hasConceptScore W4286248445C127413603 @default.
- W4286248445 hasConceptScore W4286248445C154945302 @default.
- W4286248445 hasConceptScore W4286248445C201995342 @default.
- W4286248445 hasConceptScore W4286248445C2780451532 @default.
- W4286248445 hasConceptScore W4286248445C38652104 @default.
- W4286248445 hasConceptScore W4286248445C41008148 @default.
- W4286248445 hasConceptScore W4286248445C54355233 @default.
- W4286248445 hasConceptScore W4286248445C59519942 @default.
- W4286248445 hasConceptScore W4286248445C59822182 @default.
- W4286248445 hasConceptScore W4286248445C79403827 @default.
- W4286248445 hasConceptScore W4286248445C81363708 @default.
- W4286248445 hasConceptScore W4286248445C86803240 @default.
- W4286248445 hasLocation W42862484451 @default.
- W4286248445 hasOpenAccess W4286248445 @default.
- W4286248445 hasPrimaryLocation W42862484451 @default.
- W4286248445 hasRelatedWork W2731899572 @default.
- W4286248445 hasRelatedWork W2999805992 @default.
- W4286248445 hasRelatedWork W3015951701 @default.
- W4286248445 hasRelatedWork W3116150086 @default.
- W4286248445 hasRelatedWork W3133861977 @default.
- W4286248445 hasRelatedWork W4200173597 @default.
- W4286248445 hasRelatedWork W4291897433 @default.
- W4286248445 hasRelatedWork W4312417841 @default.
- W4286248445 hasRelatedWork W4321369474 @default.
- W4286248445 hasRelatedWork W4380075502 @default.
- W4286248445 isParatext "false" @default.
- W4286248445 isRetracted "false" @default.
- W4286248445 workType "article" @default.