Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286266907> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4286266907 endingPage "488" @default.
- W4286266907 startingPage "465" @default.
- W4286266907 abstract "Graph-based sparse feature selection plays an important role in semi-supervised feature selection. However, traditional graph-based semi-supervised sparse feature selection separates graph construction from feature selection, which may reduce the performance of model because of noises and outliers. Moreover, sparse feature selection selects features based on the learned projection matrix. Therefore, redundant features are always selected by sparse model since similar features often have similar weights, which will weaken the performance of the algorithm. To alleviate the impact of the above problems, in this study, a novel semi-supervised sparse feature selection framework is proposed, in which the quality of the similarity matrix is improved by adaptive graph learning and the negative influence of redundant features is relieved via redundancy minimization regularization. In addition, based on this framework, two specific methods are given and a unified iterative algorithm is proposed to optimize the objective function. The performance of the proposed method is evaluated by comparing it with seven advanced semi-supervised methods in terms of classification accuracy and F1 score. Extensive experiments conducted on public datasets demonstrate that the proposed methods are superior to some advanced methods." @default.
- W4286266907 created "2022-07-21" @default.
- W4286266907 creator A5025420693 @default.
- W4286266907 creator A5070559820 @default.
- W4286266907 creator A5084505514 @default.
- W4286266907 creator A5087207770 @default.
- W4286266907 date "2022-09-01" @default.
- W4286266907 modified "2023-09-30" @default.
- W4286266907 title "Adaptive graph learning for semi-supervised feature selection with redundancy minimization" @default.
- W4286266907 cites W1575192016 @default.
- W4286266907 cites W1995806857 @default.
- W4286266907 cites W2020836902 @default.
- W4286266907 cites W2040373051 @default.
- W4286266907 cites W2049903561 @default.
- W4286266907 cites W2118044993 @default.
- W4286266907 cites W2158868693 @default.
- W4286266907 cites W2398606097 @default.
- W4286266907 cites W2408291668 @default.
- W4286266907 cites W2523410281 @default.
- W4286266907 cites W2550999023 @default.
- W4286266907 cites W2739902099 @default.
- W4286266907 cites W2765158981 @default.
- W4286266907 cites W2774952377 @default.
- W4286266907 cites W2783827472 @default.
- W4286266907 cites W2804643467 @default.
- W4286266907 cites W2887785120 @default.
- W4286266907 cites W2897327263 @default.
- W4286266907 cites W2899642931 @default.
- W4286266907 cites W2900743027 @default.
- W4286266907 cites W2904251885 @default.
- W4286266907 cites W2946138433 @default.
- W4286266907 cites W2991473524 @default.
- W4286266907 cites W2999814961 @default.
- W4286266907 cites W3000268651 @default.
- W4286266907 cites W3000308450 @default.
- W4286266907 cites W3008612536 @default.
- W4286266907 cites W3022782153 @default.
- W4286266907 cites W3036388822 @default.
- W4286266907 cites W3045347476 @default.
- W4286266907 cites W3115711339 @default.
- W4286266907 cites W3119688788 @default.
- W4286266907 cites W3134157553 @default.
- W4286266907 cites W3134784262 @default.
- W4286266907 cites W3151033386 @default.
- W4286266907 cites W3197318053 @default.
- W4286266907 cites W3212974566 @default.
- W4286266907 cites W4224222011 @default.
- W4286266907 doi "https://doi.org/10.1016/j.ins.2022.07.102" @default.
- W4286266907 hasPublicationYear "2022" @default.
- W4286266907 type Work @default.
- W4286266907 citedByCount "10" @default.
- W4286266907 countsByYear W42862669072022 @default.
- W4286266907 countsByYear W42862669072023 @default.
- W4286266907 crossrefType "journal-article" @default.
- W4286266907 hasAuthorship W4286266907A5025420693 @default.
- W4286266907 hasAuthorship W4286266907A5070559820 @default.
- W4286266907 hasAuthorship W4286266907A5084505514 @default.
- W4286266907 hasAuthorship W4286266907A5087207770 @default.
- W4286266907 hasConcept C111919701 @default.
- W4286266907 hasConcept C119857082 @default.
- W4286266907 hasConcept C132525143 @default.
- W4286266907 hasConcept C148483581 @default.
- W4286266907 hasConcept C152124472 @default.
- W4286266907 hasConcept C153180895 @default.
- W4286266907 hasConcept C154945302 @default.
- W4286266907 hasConcept C41008148 @default.
- W4286266907 hasConcept C79337645 @default.
- W4286266907 hasConcept C80444323 @default.
- W4286266907 hasConceptScore W4286266907C111919701 @default.
- W4286266907 hasConceptScore W4286266907C119857082 @default.
- W4286266907 hasConceptScore W4286266907C132525143 @default.
- W4286266907 hasConceptScore W4286266907C148483581 @default.
- W4286266907 hasConceptScore W4286266907C152124472 @default.
- W4286266907 hasConceptScore W4286266907C153180895 @default.
- W4286266907 hasConceptScore W4286266907C154945302 @default.
- W4286266907 hasConceptScore W4286266907C41008148 @default.
- W4286266907 hasConceptScore W4286266907C79337645 @default.
- W4286266907 hasConceptScore W4286266907C80444323 @default.
- W4286266907 hasLocation W42862669071 @default.
- W4286266907 hasOpenAccess W4286266907 @default.
- W4286266907 hasPrimaryLocation W42862669071 @default.
- W4286266907 hasRelatedWork W2156571267 @default.
- W4286266907 hasRelatedWork W2316780152 @default.
- W4286266907 hasRelatedWork W2961085424 @default.
- W4286266907 hasRelatedWork W3087493185 @default.
- W4286266907 hasRelatedWork W3200179079 @default.
- W4286266907 hasRelatedWork W4226413155 @default.
- W4286266907 hasRelatedWork W4293525103 @default.
- W4286266907 hasRelatedWork W4306674287 @default.
- W4286266907 hasRelatedWork W2345184372 @default.
- W4286266907 hasRelatedWork W4224009465 @default.
- W4286266907 hasVolume "609" @default.
- W4286266907 isParatext "false" @default.
- W4286266907 isRetracted "false" @default.
- W4286266907 workType "article" @default.