Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286277949> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4286277949 abstract "Power line inspection is a crucial task for the uninterrupted operation of an electricity distribution network. Till date, it is mainly carried out using manned helicopters or foot patrol. However, autonomous, intelligent inspection using unmanned aerial vehicles (UAVs) equipped with camera sensors has come to the fore lately as it can offer an advantageous automated way to deliver the task of inspection. For the accurate detection of the power lines in the imagery acquired, different state-of-the-art semantic segmentation techniques have been used. In this work, attention is mainly paid to the structure of the power lines, in order to find a proper deep learning architecture that can segment them efficiently, preserving their thin shape and reducing background noise. It is found out that DNNs that employ dilated convolutions can reach this goal and achieve high performance. The architectures in this work were evaluated in both literature datasets and videos collected by HEDNO S.A. (Hellenic Electricity Distribution Network Operator S.A.) using UAVs. Results show that, out of the four deep learning-based segmentation architectures used in the experiments, the D-LinkNet architecture, first introduced for road segmentation purposes in high-resolution satellite imagery, outperformed the others in terms of F'l-Score in various background scenarios." @default.
- W4286277949 created "2022-07-21" @default.
- W4286277949 creator A5027272828 @default.
- W4286277949 creator A5028930909 @default.
- W4286277949 creator A5034253411 @default.
- W4286277949 creator A5036200521 @default.
- W4286277949 creator A5054556289 @default.
- W4286277949 creator A5071136413 @default.
- W4286277949 date "2022-06-21" @default.
- W4286277949 modified "2023-10-17" @default.
- W4286277949 title "Aerial video inspection of Greek power lines structures using machine learning techniques" @default.
- W4286277949 cites W1901129140 @default.
- W4286277949 cites W1903029394 @default.
- W4286277949 cites W2412782625 @default.
- W4286277949 cites W2620051017 @default.
- W4286277949 cites W2736377497 @default.
- W4286277949 cites W2783861674 @default.
- W4286277949 cites W2893801697 @default.
- W4286277949 cites W2921370018 @default.
- W4286277949 cites W2937925194 @default.
- W4286277949 cites W2948202452 @default.
- W4286277949 cites W2948290402 @default.
- W4286277949 cites W2969168873 @default.
- W4286277949 cites W2990580785 @default.
- W4286277949 cites W2999222035 @default.
- W4286277949 cites W3021029506 @default.
- W4286277949 cites W3105636206 @default.
- W4286277949 cites W3192173774 @default.
- W4286277949 cites W4211189684 @default.
- W4286277949 doi "https://doi.org/10.1109/ist55454.2022.9827761" @default.
- W4286277949 hasPublicationYear "2022" @default.
- W4286277949 type Work @default.
- W4286277949 citedByCount "2" @default.
- W4286277949 countsByYear W42862779492022 @default.
- W4286277949 crossrefType "proceedings-article" @default.
- W4286277949 hasAuthorship W4286277949A5027272828 @default.
- W4286277949 hasAuthorship W4286277949A5028930909 @default.
- W4286277949 hasAuthorship W4286277949A5034253411 @default.
- W4286277949 hasAuthorship W4286277949A5036200521 @default.
- W4286277949 hasAuthorship W4286277949A5054556289 @default.
- W4286277949 hasAuthorship W4286277949A5071136413 @default.
- W4286277949 hasConcept C108583219 @default.
- W4286277949 hasConcept C115961682 @default.
- W4286277949 hasConcept C123657996 @default.
- W4286277949 hasConcept C124504099 @default.
- W4286277949 hasConcept C127413603 @default.
- W4286277949 hasConcept C142362112 @default.
- W4286277949 hasConcept C153349607 @default.
- W4286277949 hasConcept C154945302 @default.
- W4286277949 hasConcept C168820333 @default.
- W4286277949 hasConcept C201995342 @default.
- W4286277949 hasConcept C2780451532 @default.
- W4286277949 hasConcept C31972630 @default.
- W4286277949 hasConcept C41008148 @default.
- W4286277949 hasConcept C79403827 @default.
- W4286277949 hasConcept C89600930 @default.
- W4286277949 hasConcept C99498987 @default.
- W4286277949 hasConceptScore W4286277949C108583219 @default.
- W4286277949 hasConceptScore W4286277949C115961682 @default.
- W4286277949 hasConceptScore W4286277949C123657996 @default.
- W4286277949 hasConceptScore W4286277949C124504099 @default.
- W4286277949 hasConceptScore W4286277949C127413603 @default.
- W4286277949 hasConceptScore W4286277949C142362112 @default.
- W4286277949 hasConceptScore W4286277949C153349607 @default.
- W4286277949 hasConceptScore W4286277949C154945302 @default.
- W4286277949 hasConceptScore W4286277949C168820333 @default.
- W4286277949 hasConceptScore W4286277949C201995342 @default.
- W4286277949 hasConceptScore W4286277949C2780451532 @default.
- W4286277949 hasConceptScore W4286277949C31972630 @default.
- W4286277949 hasConceptScore W4286277949C41008148 @default.
- W4286277949 hasConceptScore W4286277949C79403827 @default.
- W4286277949 hasConceptScore W4286277949C89600930 @default.
- W4286277949 hasConceptScore W4286277949C99498987 @default.
- W4286277949 hasFunder F4320320300 @default.
- W4286277949 hasLocation W42862779491 @default.
- W4286277949 hasOpenAccess W4286277949 @default.
- W4286277949 hasPrimaryLocation W42862779491 @default.
- W4286277949 hasRelatedWork W1669643531 @default.
- W4286277949 hasRelatedWork W1721780360 @default.
- W4286277949 hasRelatedWork W2110230079 @default.
- W4286277949 hasRelatedWork W2117664411 @default.
- W4286277949 hasRelatedWork W2117933325 @default.
- W4286277949 hasRelatedWork W2122581818 @default.
- W4286277949 hasRelatedWork W2159066190 @default.
- W4286277949 hasRelatedWork W2739874619 @default.
- W4286277949 hasRelatedWork W2948658236 @default.
- W4286277949 hasRelatedWork W1967061043 @default.
- W4286277949 isParatext "false" @default.
- W4286277949 isRetracted "false" @default.
- W4286277949 workType "article" @default.