Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286295100> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4286295100 endingPage "e13546" @default.
- W4286295100 startingPage "e13546" @default.
- W4286295100 abstract "e13546 Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers. Contemporary analyses focused on a handful of molecular and clinical variables combined with machine learning algorithms (MLA) are unable to accurately predict therapy outcomes. Here, we use the Molecular Twin multi-omic analytical platform that evaluates tumor and host features extracted from 10 multi-omic analytes and provides an array of MLA, including a Parsimonious Biomarker Model that can predict survival and recurrence with limited analytic burden, while maintaining a high degree of fidelity. Methods: Retrospectively collected serum and tissue samples from 74 patients with Stage I/II resectable PDAC were subjected to targeted NGS DNA sequencing, whole transcriptome RNA sequencing, paired tissue proteomics, unpaired serum proteomics, lipidomics and computational pathology. Analytes including plasma proteins, RNA fusions, tissue proteins, plasma lipids, RNA gene expressions, CNVs, INDELS, SNVs and tumor nuclei characteristics, were processed to obtain a panel of 6363 features. 1024 single-omic and multi-omics feature combinations generated from this panel served as input for 7 different types of MLA to predict binary survival (SR) and disease recurrence (DR) outcomes. The resultant 70 single and 7098 multi-omic biomarker models were evaluated for positive predictive value (PPV) and accuracy (ACC) in predicting DR and SR, and feature proportions learned by each ML model using leave-one-patient-out cross-validation strategy. By recursively eliminating features with low importance, we developed progressively parsimonious biomarker models for predicting SR and DR. Results: Our top model was multi-omic and predicted the SR with ACC = 0.85, PPV = 0.87 and the DR with ACC = 0.90, and PPV = 0.91. It outperformed all models based only on one single analyte type including plasma protein, RNA fusion, tissue protein, plasma lipid, clinical, RNA gene expression, tumor nuclei characteristics, CNV, INDEL and SNV, in predicting the SR. This model contained predominantly plasma protein features. Interestingly, less accurate models contained a greater proportion of other features in addition to plasma proteins. Parsimonious feature reduction of the top model stabilized at 589 features yielding an ACC = 0.85, and PPV = 0.85, comparable to the intact model. Conclusions: This proof-of-concept of the Molecular Twin precision medicine platform applied in PDAC reveals the potential of our unique MLA to provide a novel parsimonious biomarker panel with similar fidelity as much larger biomarker panels. If these results are reproduced on larger datasets, across tumor types, the Molecular Twin platform would have significant potential to democratize precision cancer medicine by discovering smaller biomarker panels with the predictive performance of much larger ones thus reducing cost and simplifying assays." @default.
- W4286295100 created "2022-07-21" @default.
- W4286295100 creator A5003959395 @default.
- W4286295100 creator A5005658250 @default.
- W4286295100 creator A5006172726 @default.
- W4286295100 creator A5011179811 @default.
- W4286295100 creator A5012620880 @default.
- W4286295100 creator A5015995947 @default.
- W4286295100 creator A5016698777 @default.
- W4286295100 creator A5020183452 @default.
- W4286295100 creator A5024594616 @default.
- W4286295100 creator A5033307071 @default.
- W4286295100 creator A5036783491 @default.
- W4286295100 creator A5048083098 @default.
- W4286295100 creator A5067710731 @default.
- W4286295100 creator A5070327849 @default.
- W4286295100 creator A5077342687 @default.
- W4286295100 date "2022-06-01" @default.
- W4286295100 modified "2023-09-23" @default.
- W4286295100 title "The Molecular Twin platform: a novel machine learning tool for democratization of precision cancer medicine." @default.
- W4286295100 doi "https://doi.org/10.1200/jco.2022.40.16_suppl.e13546" @default.
- W4286295100 hasPublicationYear "2022" @default.
- W4286295100 type Work @default.
- W4286295100 citedByCount "0" @default.
- W4286295100 crossrefType "journal-article" @default.
- W4286295100 hasAuthorship W4286295100A5003959395 @default.
- W4286295100 hasAuthorship W4286295100A5005658250 @default.
- W4286295100 hasAuthorship W4286295100A5006172726 @default.
- W4286295100 hasAuthorship W4286295100A5011179811 @default.
- W4286295100 hasAuthorship W4286295100A5012620880 @default.
- W4286295100 hasAuthorship W4286295100A5015995947 @default.
- W4286295100 hasAuthorship W4286295100A5016698777 @default.
- W4286295100 hasAuthorship W4286295100A5020183452 @default.
- W4286295100 hasAuthorship W4286295100A5024594616 @default.
- W4286295100 hasAuthorship W4286295100A5033307071 @default.
- W4286295100 hasAuthorship W4286295100A5036783491 @default.
- W4286295100 hasAuthorship W4286295100A5048083098 @default.
- W4286295100 hasAuthorship W4286295100A5067710731 @default.
- W4286295100 hasAuthorship W4286295100A5070327849 @default.
- W4286295100 hasAuthorship W4286295100A5077342687 @default.
- W4286295100 hasConcept C104317684 @default.
- W4286295100 hasConcept C124535831 @default.
- W4286295100 hasConcept C142724271 @default.
- W4286295100 hasConcept C157585117 @default.
- W4286295100 hasConcept C163763905 @default.
- W4286295100 hasConcept C2781197716 @default.
- W4286295100 hasConcept C46111723 @default.
- W4286295100 hasConcept C54355233 @default.
- W4286295100 hasConcept C60644358 @default.
- W4286295100 hasConcept C70721500 @default.
- W4286295100 hasConcept C71924100 @default.
- W4286295100 hasConcept C86803240 @default.
- W4286295100 hasConceptScore W4286295100C104317684 @default.
- W4286295100 hasConceptScore W4286295100C124535831 @default.
- W4286295100 hasConceptScore W4286295100C142724271 @default.
- W4286295100 hasConceptScore W4286295100C157585117 @default.
- W4286295100 hasConceptScore W4286295100C163763905 @default.
- W4286295100 hasConceptScore W4286295100C2781197716 @default.
- W4286295100 hasConceptScore W4286295100C46111723 @default.
- W4286295100 hasConceptScore W4286295100C54355233 @default.
- W4286295100 hasConceptScore W4286295100C60644358 @default.
- W4286295100 hasConceptScore W4286295100C70721500 @default.
- W4286295100 hasConceptScore W4286295100C71924100 @default.
- W4286295100 hasConceptScore W4286295100C86803240 @default.
- W4286295100 hasIssue "16_suppl" @default.
- W4286295100 hasLocation W42862951001 @default.
- W4286295100 hasOpenAccess W4286295100 @default.
- W4286295100 hasPrimaryLocation W42862951001 @default.
- W4286295100 hasRelatedWork W1550659677 @default.
- W4286295100 hasRelatedWork W2010715465 @default.
- W4286295100 hasRelatedWork W2061449873 @default.
- W4286295100 hasRelatedWork W2108689683 @default.
- W4286295100 hasRelatedWork W2245858235 @default.
- W4286295100 hasRelatedWork W2415613079 @default.
- W4286295100 hasRelatedWork W2808428344 @default.
- W4286295100 hasRelatedWork W3081627689 @default.
- W4286295100 hasRelatedWork W3163281713 @default.
- W4286295100 hasRelatedWork W4317567415 @default.
- W4286295100 hasVolume "40" @default.
- W4286295100 isParatext "false" @default.
- W4286295100 isRetracted "false" @default.
- W4286295100 workType "article" @default.