Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286296282> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4286296282 endingPage "e13544" @default.
- W4286296282 startingPage "e13544" @default.
- W4286296282 abstract "e13544 Background: Prediction of drug response based on cancer molecular profiles is of paramount importance for precision oncology. Most existing drug response prediction models are built using drug screening data of immortalized cancer cell lines, which usually have altered genomic profiles compared with patient tumors. Recently, patient-derived organoids (PDOs) are emerging as a promising platform better representing patient tumors. We build computational drug response prediction models based on PDO drug screening data, which is the first study of its type to our knowledge. Methods: We successfully developed 27 PDO lines of colorectal cancer and 20 PDO lines of head and neck (H&N) cancer. Transcriptomics, copy number variation (CNV), and targeted DNA mutation data were generated for the PDO lines. The PDO lines were screened with 36 drugs of diversified mechanisms. The area under the dose response curve was taken as the response measurement. We used the LightGBM algorithm to build response prediction models based on cancer molecular data and drug chemical descriptors/fingerprints. To investigate the influence of different factors on the prediction performance, including different cancer types, cancer molecular features, drug features, data preprocessing methods, and others, we applied a multifactorial analysis scenario to build and evaluate 3,384 prediction models constructed with all possible combinations of the factors. For example, we built prediction models for H&N and colorectal PDOs separately and jointly. Results: A prediction model built for H&N PDOs achieved the highest prediction performance among all prediction models, which was R 2 of 0.790 in 10-fold cross-validation. The model was built using drug descriptors, CNVs, and expressions of “landmark” genes well-representing cellular transcriptomic changes identified in the LINCS project. The table below includes all the factorial differences that caused an average R 2 change larger than 1%. All R 2 changes are statistically significant (p-values < 1×10 –50 ), evaluated by pair-wise t-tests comparing models built with the status of the factor changed. The prediction performance increased, from colorectal cancer to two cancer types combined, and to H&N cancer. Gene expression data, either whole-transcriptome or the subset of LINCS genes, boosted the prediction performance. Between the two different dyes used to stain dead cells, TO-PRO-3 provided a higher prediction performance than Caspase-3/7. Conclusions: The highest drug response prediction performance achieved is R 2 of 0.790. Cancer type, dye, and whether gene expressions are used in modeling are the factors most influential on prediction performance.[Table: see text]" @default.
- W4286296282 created "2022-07-21" @default.
- W4286296282 creator A5006842195 @default.
- W4286296282 creator A5019592270 @default.
- W4286296282 creator A5020370754 @default.
- W4286296282 creator A5039059226 @default.
- W4286296282 creator A5039869327 @default.
- W4286296282 creator A5040025864 @default.
- W4286296282 creator A5042000747 @default.
- W4286296282 creator A5046675967 @default.
- W4286296282 creator A5049471852 @default.
- W4286296282 creator A5053682943 @default.
- W4286296282 creator A5054698030 @default.
- W4286296282 creator A5083207214 @default.
- W4286296282 date "2022-06-01" @default.
- W4286296282 modified "2023-10-01" @default.
- W4286296282 title "Multifactorial drug response modeling based on cancer organoid data." @default.
- W4286296282 doi "https://doi.org/10.1200/jco.2022.40.16_suppl.e13544" @default.
- W4286296282 hasPublicationYear "2022" @default.
- W4286296282 type Work @default.
- W4286296282 citedByCount "0" @default.
- W4286296282 crossrefType "journal-article" @default.
- W4286296282 hasAuthorship W4286296282A5006842195 @default.
- W4286296282 hasAuthorship W4286296282A5019592270 @default.
- W4286296282 hasAuthorship W4286296282A5020370754 @default.
- W4286296282 hasAuthorship W4286296282A5039059226 @default.
- W4286296282 hasAuthorship W4286296282A5039869327 @default.
- W4286296282 hasAuthorship W4286296282A5040025864 @default.
- W4286296282 hasAuthorship W4286296282A5042000747 @default.
- W4286296282 hasAuthorship W4286296282A5046675967 @default.
- W4286296282 hasAuthorship W4286296282A5049471852 @default.
- W4286296282 hasAuthorship W4286296282A5053682943 @default.
- W4286296282 hasAuthorship W4286296282A5054698030 @default.
- W4286296282 hasAuthorship W4286296282A5083207214 @default.
- W4286296282 hasConcept C119857082 @default.
- W4286296282 hasConcept C121608353 @default.
- W4286296282 hasConcept C126322002 @default.
- W4286296282 hasConcept C142724271 @default.
- W4286296282 hasConcept C143998085 @default.
- W4286296282 hasConcept C163763905 @default.
- W4286296282 hasConcept C170734499 @default.
- W4286296282 hasConcept C2780035454 @default.
- W4286296282 hasConcept C2994119904 @default.
- W4286296282 hasConcept C2994372470 @default.
- W4286296282 hasConcept C3020340455 @default.
- W4286296282 hasConcept C41008148 @default.
- W4286296282 hasConcept C45804977 @default.
- W4286296282 hasConcept C526805850 @default.
- W4286296282 hasConcept C60644358 @default.
- W4286296282 hasConcept C70721500 @default.
- W4286296282 hasConcept C71924100 @default.
- W4286296282 hasConcept C86803240 @default.
- W4286296282 hasConcept C96232424 @default.
- W4286296282 hasConcept C98274493 @default.
- W4286296282 hasConceptScore W4286296282C119857082 @default.
- W4286296282 hasConceptScore W4286296282C121608353 @default.
- W4286296282 hasConceptScore W4286296282C126322002 @default.
- W4286296282 hasConceptScore W4286296282C142724271 @default.
- W4286296282 hasConceptScore W4286296282C143998085 @default.
- W4286296282 hasConceptScore W4286296282C163763905 @default.
- W4286296282 hasConceptScore W4286296282C170734499 @default.
- W4286296282 hasConceptScore W4286296282C2780035454 @default.
- W4286296282 hasConceptScore W4286296282C2994119904 @default.
- W4286296282 hasConceptScore W4286296282C2994372470 @default.
- W4286296282 hasConceptScore W4286296282C3020340455 @default.
- W4286296282 hasConceptScore W4286296282C41008148 @default.
- W4286296282 hasConceptScore W4286296282C45804977 @default.
- W4286296282 hasConceptScore W4286296282C526805850 @default.
- W4286296282 hasConceptScore W4286296282C60644358 @default.
- W4286296282 hasConceptScore W4286296282C70721500 @default.
- W4286296282 hasConceptScore W4286296282C71924100 @default.
- W4286296282 hasConceptScore W4286296282C86803240 @default.
- W4286296282 hasConceptScore W4286296282C96232424 @default.
- W4286296282 hasConceptScore W4286296282C98274493 @default.
- W4286296282 hasFunder F4320306084 @default.
- W4286296282 hasIssue "16_suppl" @default.
- W4286296282 hasLocation W42862962821 @default.
- W4286296282 hasOpenAccess W4286296282 @default.
- W4286296282 hasPrimaryLocation W42862962821 @default.
- W4286296282 hasRelatedWork W2029481331 @default.
- W4286296282 hasRelatedWork W2409670391 @default.
- W4286296282 hasRelatedWork W2526474391 @default.
- W4286296282 hasRelatedWork W2568849010 @default.
- W4286296282 hasRelatedWork W2981742563 @default.
- W4286296282 hasRelatedWork W3008093769 @default.
- W4286296282 hasRelatedWork W3134085117 @default.
- W4286296282 hasRelatedWork W4283076622 @default.
- W4286296282 hasRelatedWork W4286296282 @default.
- W4286296282 hasRelatedWork W4309316237 @default.
- W4286296282 hasVolume "40" @default.
- W4286296282 isParatext "false" @default.
- W4286296282 isRetracted "false" @default.
- W4286296282 workType "article" @default.