Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286365856> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4286365856 endingPage "4675" @default.
- W4286365856 startingPage "4662" @default.
- W4286365856 abstract "Minimizing the resolution time of service-impacting incidents is a fundamental objective of Information Technology (IT) operations. Efficient root cause analysis, adaptable to diverse service environments, is key to meeting this objective. One method that provides additional insight into an incident, and hence allows enhanced root cause analysis, is categorisation of the events and log messages that characterize an incident into pre-defined operational groups. Well established natural language processing techniques that utilize pre-trained language models and word embeddings can be leveraged for this task. The adaptability of pre-trained models to classify log messages, containing large quantities of domain-specific language, remains unknown. The current contribution investigates multiple ways of addressing this deficiency. We demonstrate increased granularity of word embeddings by using character decompositions and sub-word level representations, and also explore the augmentation of word embeddings using features derived from convolutional operations. After observing that the performance of high-specificity models decreases as the number of previously unseen words increases, we explore the circumstances in which we can use a model trained with a low-specificity corpus to correctly classify log messages. Through the application of fine-tuning techniques, we can adapt our pre-trained classifier to classify log messages from service environments not encountered during pre-training in a time, and memory efficient manner. We conclude that we can effectively adapt pre-trained classifiers for impromptu service environments." @default.
- W4286365856 created "2022-07-21" @default.
- W4286365856 creator A5023926993 @default.
- W4286365856 creator A5031985645 @default.
- W4286365856 date "2022-12-01" @default.
- W4286365856 modified "2023-09-28" @default.
- W4286365856 title "Enhancements to Language Modeling Techniques for Adaptable Log Message Classification" @default.
- W4286365856 cites W1682403713 @default.
- W4286365856 cites W1832693441 @default.
- W4286365856 cites W1919179112 @default.
- W4286365856 cites W1970689298 @default.
- W4286365856 cites W2036963181 @default.
- W4286365856 cites W2096017373 @default.
- W4286365856 cites W2143612262 @default.
- W4286365856 cites W2153470728 @default.
- W4286365856 cites W2161415693 @default.
- W4286365856 cites W2214658311 @default.
- W4286365856 cites W2406552012 @default.
- W4286365856 cites W2493916176 @default.
- W4286365856 cites W2767094836 @default.
- W4286365856 cites W2804315071 @default.
- W4286365856 cites W2947815220 @default.
- W4286365856 cites W2953039584 @default.
- W4286365856 cites W2962739339 @default.
- W4286365856 cites W2963026768 @default.
- W4286365856 cites W2963625095 @default.
- W4286365856 cites W2970352191 @default.
- W4286365856 cites W2979826702 @default.
- W4286365856 cites W2980708516 @default.
- W4286365856 cites W2999884159 @default.
- W4286365856 cites W3035305939 @default.
- W4286365856 cites W3040197085 @default.
- W4286365856 cites W3099780882 @default.
- W4286365856 cites W3216056800 @default.
- W4286365856 cites W4205965165 @default.
- W4286365856 cites W4255845613 @default.
- W4286365856 doi "https://doi.org/10.1109/tnsm.2022.3192756" @default.
- W4286365856 hasPublicationYear "2022" @default.
- W4286365856 type Work @default.
- W4286365856 citedByCount "0" @default.
- W4286365856 crossrefType "journal-article" @default.
- W4286365856 hasAuthorship W4286365856A5023926993 @default.
- W4286365856 hasAuthorship W4286365856A5031985645 @default.
- W4286365856 hasConcept C119857082 @default.
- W4286365856 hasConcept C137293760 @default.
- W4286365856 hasConcept C138885662 @default.
- W4286365856 hasConcept C154945302 @default.
- W4286365856 hasConcept C162324750 @default.
- W4286365856 hasConcept C177606310 @default.
- W4286365856 hasConcept C187736073 @default.
- W4286365856 hasConcept C18903297 @default.
- W4286365856 hasConcept C195324797 @default.
- W4286365856 hasConcept C204321447 @default.
- W4286365856 hasConcept C2779439875 @default.
- W4286365856 hasConcept C2780451532 @default.
- W4286365856 hasConcept C41008148 @default.
- W4286365856 hasConcept C41895202 @default.
- W4286365856 hasConcept C86803240 @default.
- W4286365856 hasConcept C90805587 @default.
- W4286365856 hasConcept C95623464 @default.
- W4286365856 hasConceptScore W4286365856C119857082 @default.
- W4286365856 hasConceptScore W4286365856C137293760 @default.
- W4286365856 hasConceptScore W4286365856C138885662 @default.
- W4286365856 hasConceptScore W4286365856C154945302 @default.
- W4286365856 hasConceptScore W4286365856C162324750 @default.
- W4286365856 hasConceptScore W4286365856C177606310 @default.
- W4286365856 hasConceptScore W4286365856C187736073 @default.
- W4286365856 hasConceptScore W4286365856C18903297 @default.
- W4286365856 hasConceptScore W4286365856C195324797 @default.
- W4286365856 hasConceptScore W4286365856C204321447 @default.
- W4286365856 hasConceptScore W4286365856C2779439875 @default.
- W4286365856 hasConceptScore W4286365856C2780451532 @default.
- W4286365856 hasConceptScore W4286365856C41008148 @default.
- W4286365856 hasConceptScore W4286365856C41895202 @default.
- W4286365856 hasConceptScore W4286365856C86803240 @default.
- W4286365856 hasConceptScore W4286365856C90805587 @default.
- W4286365856 hasConceptScore W4286365856C95623464 @default.
- W4286365856 hasIssue "4" @default.
- W4286365856 hasLocation W42863658561 @default.
- W4286365856 hasOpenAccess W4286365856 @default.
- W4286365856 hasPrimaryLocation W42863658561 @default.
- W4286365856 hasRelatedWork W1542956019 @default.
- W4286365856 hasRelatedWork W1806995473 @default.
- W4286365856 hasRelatedWork W2035959783 @default.
- W4286365856 hasRelatedWork W2602143361 @default.
- W4286365856 hasRelatedWork W2883550961 @default.
- W4286365856 hasRelatedWork W2977842567 @default.
- W4286365856 hasRelatedWork W3107474891 @default.
- W4286365856 hasRelatedWork W3184371396 @default.
- W4286365856 hasRelatedWork W3185852197 @default.
- W4286365856 hasRelatedWork W4226226396 @default.
- W4286365856 hasVolume "19" @default.
- W4286365856 isParatext "false" @default.
- W4286365856 isRetracted "false" @default.
- W4286365856 workType "article" @default.