Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286383457> ?p ?o ?g. }
- W4286383457 endingPage "1762" @default.
- W4286383457 startingPage "1746" @default.
- W4286383457 abstract "Most design standards require the calculation of the elastic critical bending moment for the design and verification of steel beams. Formulae exists for uniform beams with double or mono-symmetric cross-sections but, for tapered beams, simple design formulae are yet to be developed because of the complexity associated with the non-uniform geometry of these members. This work proposes a neural network model to calculate the critical moment. The model is developed using the Backpropagation and Levenberg–Marquardt algorithms and considering 60549 data samples for training and 8526 samples for validation. The samples are generated by a numerical model using the Finite Element Method (FEM). An innovative methodology to reduce the number of samples necessary to train the model is implemented based on the concept of random sample generation with constrained geometric proportions. The accuracy of the developed model is further illustrated on some particular cases and against the FEM results of other authors. For the uniform beams, the results of the proposed model are compared against those from existing formulae for uniform members showing its improved accuracy. Finally, it is expected that this investigation demonstrates the benefits of the use of neural networks based solutions as fast assessment tools during the search of optimal structural solutions in the early design stages." @default.
- W4286383457 created "2022-07-22" @default.
- W4286383457 creator A5002800417 @default.
- W4286383457 date "2022-07-01" @default.
- W4286383457 modified "2023-09-30" @default.
- W4286383457 title "Neural network models for the critical bending moment of uniform and tapered beams" @default.
- W4286383457 cites W1577144450 @default.
- W4286383457 cites W1965945357 @default.
- W4286383457 cites W1973979054 @default.
- W4286383457 cites W1974951309 @default.
- W4286383457 cites W1976097027 @default.
- W4286383457 cites W1980486723 @default.
- W4286383457 cites W1982151782 @default.
- W4286383457 cites W1989139156 @default.
- W4286383457 cites W1995915071 @default.
- W4286383457 cites W2004889233 @default.
- W4286383457 cites W2006960602 @default.
- W4286383457 cites W2016801439 @default.
- W4286383457 cites W2018371935 @default.
- W4286383457 cites W2018725776 @default.
- W4286383457 cites W2019758567 @default.
- W4286383457 cites W2033207049 @default.
- W4286383457 cites W2035013093 @default.
- W4286383457 cites W2044145692 @default.
- W4286383457 cites W2044759887 @default.
- W4286383457 cites W2053441273 @default.
- W4286383457 cites W2077045616 @default.
- W4286383457 cites W2079654688 @default.
- W4286383457 cites W2081079940 @default.
- W4286383457 cites W2085730861 @default.
- W4286383457 cites W2086135075 @default.
- W4286383457 cites W2086795570 @default.
- W4286383457 cites W2087070363 @default.
- W4286383457 cites W2135156663 @default.
- W4286383457 cites W2155482699 @default.
- W4286383457 cites W2173025977 @default.
- W4286383457 cites W2187316888 @default.
- W4286383457 cites W2236108979 @default.
- W4286383457 cites W2256578114 @default.
- W4286383457 cites W2302206717 @default.
- W4286383457 cites W2416407826 @default.
- W4286383457 cites W2487090797 @default.
- W4286383457 cites W2616517368 @default.
- W4286383457 cites W2770439810 @default.
- W4286383457 cites W2791964998 @default.
- W4286383457 cites W2885276561 @default.
- W4286383457 cites W2906014433 @default.
- W4286383457 cites W2908186903 @default.
- W4286383457 cites W2923064364 @default.
- W4286383457 cites W2951916692 @default.
- W4286383457 cites W3045101534 @default.
- W4286383457 cites W3047985228 @default.
- W4286383457 cites W3081836728 @default.
- W4286383457 cites W3120517792 @default.
- W4286383457 cites W3145568218 @default.
- W4286383457 cites W3170173440 @default.
- W4286383457 cites W3174425750 @default.
- W4286383457 cites W3175716836 @default.
- W4286383457 cites W3199221098 @default.
- W4286383457 cites W3214006185 @default.
- W4286383457 cites W333311942 @default.
- W4286383457 cites W772552070 @default.
- W4286383457 cites W871904887 @default.
- W4286383457 doi "https://doi.org/10.1016/j.istruc.2022.05.096" @default.
- W4286383457 hasPublicationYear "2022" @default.
- W4286383457 type Work @default.
- W4286383457 citedByCount "3" @default.
- W4286383457 countsByYear W42863834572023 @default.
- W4286383457 crossrefType "journal-article" @default.
- W4286383457 hasAuthorship W4286383457A5002800417 @default.
- W4286383457 hasBestOaLocation W42863834571 @default.
- W4286383457 hasConcept C111472728 @default.
- W4286383457 hasConcept C11413529 @default.
- W4286383457 hasConcept C119857082 @default.
- W4286383457 hasConcept C121332964 @default.
- W4286383457 hasConcept C127413603 @default.
- W4286383457 hasConcept C135628077 @default.
- W4286383457 hasConcept C138885662 @default.
- W4286383457 hasConcept C155032097 @default.
- W4286383457 hasConcept C179254644 @default.
- W4286383457 hasConcept C2780586882 @default.
- W4286383457 hasConcept C28826006 @default.
- W4286383457 hasConcept C33923547 @default.
- W4286383457 hasConcept C41008148 @default.
- W4286383457 hasConcept C50644808 @default.
- W4286383457 hasConcept C66938386 @default.
- W4286383457 hasConcept C70673446 @default.
- W4286383457 hasConcept C74650414 @default.
- W4286383457 hasConcept C87210426 @default.
- W4286383457 hasConceptScore W4286383457C111472728 @default.
- W4286383457 hasConceptScore W4286383457C11413529 @default.
- W4286383457 hasConceptScore W4286383457C119857082 @default.
- W4286383457 hasConceptScore W4286383457C121332964 @default.
- W4286383457 hasConceptScore W4286383457C127413603 @default.
- W4286383457 hasConceptScore W4286383457C135628077 @default.
- W4286383457 hasConceptScore W4286383457C138885662 @default.
- W4286383457 hasConceptScore W4286383457C155032097 @default.
- W4286383457 hasConceptScore W4286383457C179254644 @default.