Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286447582> ?p ?o ?g. }
- W4286447582 endingPage "108224" @default.
- W4286447582 startingPage "108224" @default.
- W4286447582 abstract "Due to the COVID-19 epidemic and the curfew caused by it, many people have sought to find an ADPS on the internet in the last few years. This hints to a new age of medical treatment, all the more so if the number of internet users continues to expand. As a result, automatic illness prediction online applications have attracted the interest of a large number of researchers worldwide. This work aims to develop and implement an automated illness prediction system based on speech. The system will be designed to forecast the sort of ailment a patient is suffering from based on his voice, but this was not feasible during the trial, therefore the diseases were divided into three categories (painful, light pain and psychological pain), and then the diagnose process were implemented accordingly. The medical dataset named speech, transcription, and intent served as the baseline for this study. The smoothness, MFCC, and SCV properties were used in this work, which demonstrated their high representation to human being medical situations. The noise reduction forward-backward filter was used to eliminate noise from wave files captured online in order to account for the high level of noise seen in the deployed dataset. For this study, a hybrid feature selection method was created and built that combined the output of a genetic algorithm (GA) with the inputs of a NN algorithm. Classification was performed using SVM, neural network, and GMM. The greatest results obtained were 94.55% illness classification accuracy in terms of SVM. The results showed that diagnosing illness through speech is a difficult process, especially when diagnosing each type of illness separately, but when grouping the different illness types into groups, depending on the amount of pain and the psychological situation of the patient, the results were much higher." @default.
- W4286447582 created "2022-07-22" @default.
- W4286447582 creator A5010140951 @default.
- W4286447582 creator A5043682526 @default.
- W4286447582 creator A5061307316 @default.
- W4286447582 creator A5068021506 @default.
- W4286447582 date "2022-09-01" @default.
- W4286447582 modified "2023-10-18" @default.
- W4286447582 title "Automatic illness prediction system through speech" @default.
- W4286447582 cites W1967676062 @default.
- W4286447582 cites W1974878527 @default.
- W4286447582 cites W1997068389 @default.
- W4286447582 cites W2017337590 @default.
- W4286447582 cites W2030463924 @default.
- W4286447582 cites W2046499381 @default.
- W4286447582 cites W2062302861 @default.
- W4286447582 cites W2083544150 @default.
- W4286447582 cites W2112382973 @default.
- W4286447582 cites W2147164400 @default.
- W4286447582 cites W2150350095 @default.
- W4286447582 cites W2151057058 @default.
- W4286447582 cites W2152740435 @default.
- W4286447582 cites W2154408885 @default.
- W4286447582 cites W2167101736 @default.
- W4286447582 cites W2530921900 @default.
- W4286447582 cites W2917157846 @default.
- W4286447582 cites W2945608075 @default.
- W4286447582 cites W3007587603 @default.
- W4286447582 cites W3162853854 @default.
- W4286447582 doi "https://doi.org/10.1016/j.compeleceng.2022.108224" @default.
- W4286447582 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35880184" @default.
- W4286447582 hasPublicationYear "2022" @default.
- W4286447582 type Work @default.
- W4286447582 citedByCount "0" @default.
- W4286447582 crossrefType "journal-article" @default.
- W4286447582 hasAuthorship W4286447582A5010140951 @default.
- W4286447582 hasAuthorship W4286447582A5043682526 @default.
- W4286447582 hasAuthorship W4286447582A5061307316 @default.
- W4286447582 hasAuthorship W4286447582A5068021506 @default.
- W4286447582 hasBestOaLocation W42864475822 @default.
- W4286447582 hasConcept C106131492 @default.
- W4286447582 hasConcept C110875604 @default.
- W4286447582 hasConcept C115961682 @default.
- W4286447582 hasConcept C119857082 @default.
- W4286447582 hasConcept C12267149 @default.
- W4286447582 hasConcept C124101348 @default.
- W4286447582 hasConcept C136764020 @default.
- W4286447582 hasConcept C142724271 @default.
- W4286447582 hasConcept C148483581 @default.
- W4286447582 hasConcept C151989614 @default.
- W4286447582 hasConcept C154945302 @default.
- W4286447582 hasConcept C23123220 @default.
- W4286447582 hasConcept C2779134260 @default.
- W4286447582 hasConcept C2779422693 @default.
- W4286447582 hasConcept C28490314 @default.
- W4286447582 hasConcept C3008058167 @default.
- W4286447582 hasConcept C31972630 @default.
- W4286447582 hasConcept C41008148 @default.
- W4286447582 hasConcept C524204448 @default.
- W4286447582 hasConcept C52622490 @default.
- W4286447582 hasConcept C71924100 @default.
- W4286447582 hasConcept C88548561 @default.
- W4286447582 hasConcept C99498987 @default.
- W4286447582 hasConceptScore W4286447582C106131492 @default.
- W4286447582 hasConceptScore W4286447582C110875604 @default.
- W4286447582 hasConceptScore W4286447582C115961682 @default.
- W4286447582 hasConceptScore W4286447582C119857082 @default.
- W4286447582 hasConceptScore W4286447582C12267149 @default.
- W4286447582 hasConceptScore W4286447582C124101348 @default.
- W4286447582 hasConceptScore W4286447582C136764020 @default.
- W4286447582 hasConceptScore W4286447582C142724271 @default.
- W4286447582 hasConceptScore W4286447582C148483581 @default.
- W4286447582 hasConceptScore W4286447582C151989614 @default.
- W4286447582 hasConceptScore W4286447582C154945302 @default.
- W4286447582 hasConceptScore W4286447582C23123220 @default.
- W4286447582 hasConceptScore W4286447582C2779134260 @default.
- W4286447582 hasConceptScore W4286447582C2779422693 @default.
- W4286447582 hasConceptScore W4286447582C28490314 @default.
- W4286447582 hasConceptScore W4286447582C3008058167 @default.
- W4286447582 hasConceptScore W4286447582C31972630 @default.
- W4286447582 hasConceptScore W4286447582C41008148 @default.
- W4286447582 hasConceptScore W4286447582C524204448 @default.
- W4286447582 hasConceptScore W4286447582C52622490 @default.
- W4286447582 hasConceptScore W4286447582C71924100 @default.
- W4286447582 hasConceptScore W4286447582C88548561 @default.
- W4286447582 hasConceptScore W4286447582C99498987 @default.
- W4286447582 hasLocation W42864475821 @default.
- W4286447582 hasLocation W42864475822 @default.
- W4286447582 hasLocation W42864475823 @default.
- W4286447582 hasOpenAccess W4286447582 @default.
- W4286447582 hasPrimaryLocation W42864475821 @default.
- W4286447582 hasRelatedWork W1576894437 @default.
- W4286447582 hasRelatedWork W2370639217 @default.
- W4286447582 hasRelatedWork W2563050069 @default.
- W4286447582 hasRelatedWork W2937631562 @default.
- W4286447582 hasRelatedWork W3105251098 @default.
- W4286447582 hasRelatedWork W3194539120 @default.
- W4286447582 hasRelatedWork W3195168932 @default.