Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286454809> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4286454809 endingPage "239" @default.
- W4286454809 startingPage "220" @default.
- W4286454809 abstract "Although the opioid crisis is a problem worldwide, recent emerging technology has the potential of curtailing the epidemic. By administering micro-doses of medication as needed, a feedback-driven medicine pump could lessen the highs and lows associated with the formation of an addiction. The focus of this study was to develop a feedback control loop for this pump that optimizes drug concentration in the bloodstream based on set criteria. In the process of optimization of the system, the mathematical model representing the system was analyzed to find an open loop transfer function. Using this function, a PID tuner was applied to set feedback control. Both machine learning (ML) and deep learning (DL) techniques are explored to act as a classifier that aids the pump in administering doses. The setpoint concentration of medication in the patient’s bloodstream was calculated to be 7.55 mg/ml this setpoint was the basis for steady state concentration of the transfer function. When a PID tuner was added to the feedback system, the plot was optimized to satisfy the design criteria of a rise time less than 25-minutes and no more than a 5% overshoot of the setpoint concentration. Naïve Bayesian (NB), Tree and support-vector machines (SVM) classifiers achieved the best classification accuracy of 100%. A DL network was successfully developed to predict patient class. This work is the theoretical basis for developing a feedback-driven medicine pump and an algorithm that can classify patients based on their body’s metabolism that will aid the doctor in formatting the medicine pump so that the patient is receiving the proper amount of medication." @default.
- W4286454809 created "2022-07-22" @default.
- W4286454809 creator A5000331008 @default.
- W4286454809 creator A5029838145 @default.
- W4286454809 creator A5036008837 @default.
- W4286454809 creator A5050180320 @default.
- W4286454809 date "2022-01-01" @default.
- W4286454809 modified "2023-10-14" @default.
- W4286454809 title "Feedback Control of Medication Delivery Device Using Machine Learning-Based Control Co-Design" @default.
- W4286454809 cites W3025628315 @default.
- W4286454809 cites W3097742487 @default.
- W4286454809 cites W3126855403 @default.
- W4286454809 cites W3128290931 @default.
- W4286454809 cites W3196872988 @default.
- W4286454809 doi "https://doi.org/10.4236/jsea.2022.157013" @default.
- W4286454809 hasPublicationYear "2022" @default.
- W4286454809 type Work @default.
- W4286454809 citedByCount "0" @default.
- W4286454809 crossrefType "journal-article" @default.
- W4286454809 hasAuthorship W4286454809A5000331008 @default.
- W4286454809 hasAuthorship W4286454809A5029838145 @default.
- W4286454809 hasAuthorship W4286454809A5036008837 @default.
- W4286454809 hasAuthorship W4286454809A5050180320 @default.
- W4286454809 hasBestOaLocation W42864548091 @default.
- W4286454809 hasConcept C119857082 @default.
- W4286454809 hasConcept C12267149 @default.
- W4286454809 hasConcept C12302492 @default.
- W4286454809 hasConcept C127413603 @default.
- W4286454809 hasConcept C133731056 @default.
- W4286454809 hasConcept C154945302 @default.
- W4286454809 hasConcept C2775924081 @default.
- W4286454809 hasConcept C41008148 @default.
- W4286454809 hasConcept C47116090 @default.
- W4286454809 hasConcept C47446073 @default.
- W4286454809 hasConcept C536315585 @default.
- W4286454809 hasConcept C74064498 @default.
- W4286454809 hasConcept C76155785 @default.
- W4286454809 hasConcept C9819579 @default.
- W4286454809 hasConceptScore W4286454809C119857082 @default.
- W4286454809 hasConceptScore W4286454809C12267149 @default.
- W4286454809 hasConceptScore W4286454809C12302492 @default.
- W4286454809 hasConceptScore W4286454809C127413603 @default.
- W4286454809 hasConceptScore W4286454809C133731056 @default.
- W4286454809 hasConceptScore W4286454809C154945302 @default.
- W4286454809 hasConceptScore W4286454809C2775924081 @default.
- W4286454809 hasConceptScore W4286454809C41008148 @default.
- W4286454809 hasConceptScore W4286454809C47116090 @default.
- W4286454809 hasConceptScore W4286454809C47446073 @default.
- W4286454809 hasConceptScore W4286454809C536315585 @default.
- W4286454809 hasConceptScore W4286454809C74064498 @default.
- W4286454809 hasConceptScore W4286454809C76155785 @default.
- W4286454809 hasConceptScore W4286454809C9819579 @default.
- W4286454809 hasIssue "07" @default.
- W4286454809 hasLocation W42864548091 @default.
- W4286454809 hasOpenAccess W4286454809 @default.
- W4286454809 hasPrimaryLocation W42864548091 @default.
- W4286454809 hasRelatedWork W1577794277 @default.
- W4286454809 hasRelatedWork W2022616255 @default.
- W4286454809 hasRelatedWork W2057859201 @default.
- W4286454809 hasRelatedWork W2080929820 @default.
- W4286454809 hasRelatedWork W2112578702 @default.
- W4286454809 hasRelatedWork W2151963564 @default.
- W4286454809 hasRelatedWork W2321947529 @default.
- W4286454809 hasRelatedWork W2345582498 @default.
- W4286454809 hasRelatedWork W3125270601 @default.
- W4286454809 hasRelatedWork W4313892589 @default.
- W4286454809 hasVolume "15" @default.
- W4286454809 isParatext "false" @default.
- W4286454809 isRetracted "false" @default.
- W4286454809 workType "article" @default.