Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286456972> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4286456972 abstract "Electrical, metal, plastic, and food manufacturing are among the major energy-consuming industries in the U.S. Since 1981, the U.S. Department of Energy Industrial Assessments Centers (IACs) have conducted audits to track and analyze energy data across several industries and provided recommendations for improving energy efficiency. In this article, we used statistical and machine learning techniques to draw insights from this IAC dataset with over 15,000 samples collected from 1981 to 2013. We developed predictive models for energy consumption using machine learning techniques such as Multiple Linear Regression, Random Forest Regressor, Decision Tree Regressor, and Extreme Gradient Boost Regressor. We also developed classifier models using Support Vector Machines, Random Forest, K-Nearest Neighbor (KNN), and deep learning. Results using this data set indicate that Random Forest Regressor is the best prediction technique with an R 2 of 0.869, and the Random Forest classifier is the best technique with precision, recall, F1 score, and accuracy of 0.818, 0.884, 0.844, and 0.883, respectively. Deep learning also performed competitively with an accuracy of about 0.88 in training and testing after 10 epochs. The machine learning models could be useful in benchmarking the energy consumption of factories and identifying opportunities to improve energy efficiency." @default.
- W4286456972 created "2022-07-22" @default.
- W4286456972 creator A5017093637 @default.
- W4286456972 creator A5025135311 @default.
- W4286456972 creator A5086009358 @default.
- W4286456972 date "2022-07-22" @default.
- W4286456972 modified "2023-10-05" @default.
- W4286456972 title "Modeling Energy Consumption Using Machine Learning" @default.
- W4286456972 cites W114304464 @default.
- W4286456972 cites W1577202950 @default.
- W4286456972 cites W1638001288 @default.
- W4286456972 cites W171772366 @default.
- W4286456972 cites W2024983677 @default.
- W4286456972 cites W2027054050 @default.
- W4286456972 cites W2062781995 @default.
- W4286456972 cites W2260243862 @default.
- W4286456972 cites W2333765896 @default.
- W4286456972 cites W2340299955 @default.
- W4286456972 cites W2690669732 @default.
- W4286456972 cites W2745580547 @default.
- W4286456972 cites W2757191616 @default.
- W4286456972 cites W2933878133 @default.
- W4286456972 cites W3000983008 @default.
- W4286456972 cites W3025899234 @default.
- W4286456972 cites W3044868864 @default.
- W4286456972 cites W3087129918 @default.
- W4286456972 cites W3094580886 @default.
- W4286456972 cites W3118287282 @default.
- W4286456972 cites W3134891960 @default.
- W4286456972 cites W3143757879 @default.
- W4286456972 cites W3165836018 @default.
- W4286456972 cites W3166542049 @default.
- W4286456972 cites W4205354871 @default.
- W4286456972 cites W4239780819 @default.
- W4286456972 doi "https://doi.org/10.3389/fmtec.2022.855208" @default.
- W4286456972 hasPublicationYear "2022" @default.
- W4286456972 type Work @default.
- W4286456972 citedByCount "1" @default.
- W4286456972 countsByYear W42864569722023 @default.
- W4286456972 crossrefType "journal-article" @default.
- W4286456972 hasAuthorship W4286456972A5017093637 @default.
- W4286456972 hasAuthorship W4286456972A5025135311 @default.
- W4286456972 hasAuthorship W4286456972A5086009358 @default.
- W4286456972 hasBestOaLocation W42864569721 @default.
- W4286456972 hasConcept C108583219 @default.
- W4286456972 hasConcept C119599485 @default.
- W4286456972 hasConcept C119857082 @default.
- W4286456972 hasConcept C12267149 @default.
- W4286456972 hasConcept C124101348 @default.
- W4286456972 hasConcept C127413603 @default.
- W4286456972 hasConcept C144133560 @default.
- W4286456972 hasConcept C154945302 @default.
- W4286456972 hasConcept C162853370 @default.
- W4286456972 hasConcept C169258074 @default.
- W4286456972 hasConcept C2780150128 @default.
- W4286456972 hasConcept C2780165032 @default.
- W4286456972 hasConcept C41008148 @default.
- W4286456972 hasConcept C45942800 @default.
- W4286456972 hasConcept C50644808 @default.
- W4286456972 hasConcept C70153297 @default.
- W4286456972 hasConcept C84525736 @default.
- W4286456972 hasConcept C86251818 @default.
- W4286456972 hasConceptScore W4286456972C108583219 @default.
- W4286456972 hasConceptScore W4286456972C119599485 @default.
- W4286456972 hasConceptScore W4286456972C119857082 @default.
- W4286456972 hasConceptScore W4286456972C12267149 @default.
- W4286456972 hasConceptScore W4286456972C124101348 @default.
- W4286456972 hasConceptScore W4286456972C127413603 @default.
- W4286456972 hasConceptScore W4286456972C144133560 @default.
- W4286456972 hasConceptScore W4286456972C154945302 @default.
- W4286456972 hasConceptScore W4286456972C162853370 @default.
- W4286456972 hasConceptScore W4286456972C169258074 @default.
- W4286456972 hasConceptScore W4286456972C2780150128 @default.
- W4286456972 hasConceptScore W4286456972C2780165032 @default.
- W4286456972 hasConceptScore W4286456972C41008148 @default.
- W4286456972 hasConceptScore W4286456972C45942800 @default.
- W4286456972 hasConceptScore W4286456972C50644808 @default.
- W4286456972 hasConceptScore W4286456972C70153297 @default.
- W4286456972 hasConceptScore W4286456972C84525736 @default.
- W4286456972 hasConceptScore W4286456972C86251818 @default.
- W4286456972 hasLocation W42864569721 @default.
- W4286456972 hasOpenAccess W4286456972 @default.
- W4286456972 hasPrimaryLocation W42864569721 @default.
- W4286456972 hasRelatedWork W3100297620 @default.
- W4286456972 hasRelatedWork W3201348321 @default.
- W4286456972 hasRelatedWork W4281616679 @default.
- W4286456972 hasRelatedWork W4285298015 @default.
- W4286456972 hasRelatedWork W4286456972 @default.
- W4286456972 hasRelatedWork W4308191010 @default.
- W4286456972 hasRelatedWork W4313488044 @default.
- W4286456972 hasRelatedWork W4318350883 @default.
- W4286456972 hasRelatedWork W4385728794 @default.
- W4286456972 hasRelatedWork W4386123260 @default.
- W4286456972 hasVolume "2" @default.
- W4286456972 isParatext "false" @default.
- W4286456972 isRetracted "false" @default.
- W4286456972 workType "article" @default.