Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286484218> ?p ?o ?g. }
- W4286484218 endingPage "9093" @default.
- W4286484218 startingPage "9081" @default.
- W4286484218 abstract "Over the years, the automation of traditional power grids has been taking place to overcome the difficulties such as blackouts, outages, demand-side management, load profiling, enhancing customer participation, etc. This automation enables the traditional grids to be transformed into smart grids. Smart homes/buildings are key sub-categories of smart grids. The advanced metering infrastructure connected to them continuously captures and stores the energy consumption data as datasets. Usually, understanding the structure of data and the behaviour of customers from energy consumption datasets is a tedious task. There are some literature works tried to explore various smart home energy consumption datasets as well as investigate customer behaviour, however, most of these methods are complex in implementation. Hence, this paper proposes a simple approach for the comprehensive exploration of the smart home energy consumption dataset. This approach can be used for any similar smart home dataset that contains numerical data. Further, using the exploration results, this paper analyzes the customers’ energy consumption behaviour by identifying peak hours in communication and electrical perspectives. To implement the proposed approach, an energy consumption dataset ‘Tracebase’ is considered as a case study. The exploration of the considered dataset results in 2356 files distributed among various directories. For customer behaviour analysis, the energy consumption data of all 43 appliances (with more than 95 million records) is considered from the “complete” directory of the “Tracebase” dataset. This analysis revealed the peak hours as hour-23 from the communication perspective and hour-9 from the electrical perspective. These represent the customer behaviour in terms of their participation in the power network, which further helps for better grid operations." @default.
- W4286484218 created "2022-07-22" @default.
- W4286484218 creator A5032081151 @default.
- W4286484218 creator A5036924250 @default.
- W4286484218 creator A5045071979 @default.
- W4286484218 creator A5053068895 @default.
- W4286484218 creator A5059115706 @default.
- W4286484218 creator A5069824334 @default.
- W4286484218 creator A5079800217 @default.
- W4286484218 creator A5082299975 @default.
- W4286484218 date "2022-11-01" @default.
- W4286484218 modified "2023-10-01" @default.
- W4286484218 title "A comprehensive analytical exploration and customer behaviour analysis of smart home energy consumption data with a practical case study" @default.
- W4286484218 cites W1779157218 @default.
- W4286484218 cites W1989866797 @default.
- W4286484218 cites W1997729648 @default.
- W4286484218 cites W2032161710 @default.
- W4286484218 cites W2069934192 @default.
- W4286484218 cites W2071722440 @default.
- W4286484218 cites W2167664869 @default.
- W4286484218 cites W2204566248 @default.
- W4286484218 cites W2209508536 @default.
- W4286484218 cites W2295959395 @default.
- W4286484218 cites W2330456757 @default.
- W4286484218 cites W2555926712 @default.
- W4286484218 cites W2597866042 @default.
- W4286484218 cites W2750941888 @default.
- W4286484218 cites W2754252319 @default.
- W4286484218 cites W2778405665 @default.
- W4286484218 cites W2788544268 @default.
- W4286484218 cites W2800423051 @default.
- W4286484218 cites W2807818015 @default.
- W4286484218 cites W2948490758 @default.
- W4286484218 cites W2952133925 @default.
- W4286484218 cites W2979384996 @default.
- W4286484218 cites W2998310744 @default.
- W4286484218 cites W3011646287 @default.
- W4286484218 cites W3034597752 @default.
- W4286484218 cites W3049016583 @default.
- W4286484218 cites W3097468641 @default.
- W4286484218 cites W3105031020 @default.
- W4286484218 cites W3130388336 @default.
- W4286484218 cites W3158815795 @default.
- W4286484218 cites W3185852527 @default.
- W4286484218 cites W4220665291 @default.
- W4286484218 cites W3141396188 @default.
- W4286484218 doi "https://doi.org/10.1016/j.egyr.2022.07.043" @default.
- W4286484218 hasPublicationYear "2022" @default.
- W4286484218 type Work @default.
- W4286484218 citedByCount "4" @default.
- W4286484218 countsByYear W42864842182022 @default.
- W4286484218 countsByYear W42864842182023 @default.
- W4286484218 crossrefType "journal-article" @default.
- W4286484218 hasAuthorship W4286484218A5032081151 @default.
- W4286484218 hasAuthorship W4286484218A5036924250 @default.
- W4286484218 hasAuthorship W4286484218A5045071979 @default.
- W4286484218 hasAuthorship W4286484218A5053068895 @default.
- W4286484218 hasAuthorship W4286484218A5059115706 @default.
- W4286484218 hasAuthorship W4286484218A5069824334 @default.
- W4286484218 hasAuthorship W4286484218A5079800217 @default.
- W4286484218 hasAuthorship W4286484218A5082299975 @default.
- W4286484218 hasBestOaLocation W42864842181 @default.
- W4286484218 hasConcept C10558101 @default.
- W4286484218 hasConcept C115901376 @default.
- W4286484218 hasConcept C119599485 @default.
- W4286484218 hasConcept C127413603 @default.
- W4286484218 hasConcept C144024400 @default.
- W4286484218 hasConcept C206658404 @default.
- W4286484218 hasConcept C2522767166 @default.
- W4286484218 hasConcept C2779510800 @default.
- W4286484218 hasConcept C2780165032 @default.
- W4286484218 hasConcept C30772137 @default.
- W4286484218 hasConcept C30905978 @default.
- W4286484218 hasConcept C36289849 @default.
- W4286484218 hasConcept C41008148 @default.
- W4286484218 hasConcept C507571656 @default.
- W4286484218 hasConcept C555944384 @default.
- W4286484218 hasConcept C76155785 @default.
- W4286484218 hasConcept C78519656 @default.
- W4286484218 hasConcept C93763578 @default.
- W4286484218 hasConceptScore W4286484218C10558101 @default.
- W4286484218 hasConceptScore W4286484218C115901376 @default.
- W4286484218 hasConceptScore W4286484218C119599485 @default.
- W4286484218 hasConceptScore W4286484218C127413603 @default.
- W4286484218 hasConceptScore W4286484218C144024400 @default.
- W4286484218 hasConceptScore W4286484218C206658404 @default.
- W4286484218 hasConceptScore W4286484218C2522767166 @default.
- W4286484218 hasConceptScore W4286484218C2779510800 @default.
- W4286484218 hasConceptScore W4286484218C2780165032 @default.
- W4286484218 hasConceptScore W4286484218C30772137 @default.
- W4286484218 hasConceptScore W4286484218C30905978 @default.
- W4286484218 hasConceptScore W4286484218C36289849 @default.
- W4286484218 hasConceptScore W4286484218C41008148 @default.
- W4286484218 hasConceptScore W4286484218C507571656 @default.
- W4286484218 hasConceptScore W4286484218C555944384 @default.
- W4286484218 hasConceptScore W4286484218C76155785 @default.
- W4286484218 hasConceptScore W4286484218C78519656 @default.
- W4286484218 hasConceptScore W4286484218C93763578 @default.