Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286484345> ?p ?o ?g. }
- W4286484345 endingPage "115358" @default.
- W4286484345 startingPage "115358" @default.
- W4286484345 abstract "A probabilistic approach to phase-field brittle and ductile fracture with random material and geometric properties is proposed within this work. In the macroscopic failure mechanics, materials properties and spatial quantities (of different phases in the geometrical domain) are assumed to be homogeneous and deterministic. This is unlike the lower scale with strong fluctuation in the material and geometrical properties. Such a response is approximated through some uncertainty in the model problem. The presented contribution is devoted to providing a mathematical framework for modeling uncertainty through stochastic analysis of a microstructure undergoing brittle/ductile failure. Hereby, the proposed model employs various representative volume elements with random distribution of stiff inclusions and voids within the composite structure. We develop an allocating strategy to allocate the heterogeneities and generate the corresponding meshes in two- and three-dimensional cases. Then the Monte Carlo Finite Element Method (MC-FEM) is employed for solving the stochastic PDE-based model and approximate the expectation and the variance of the solution field of brittle/ductile failure by evaluating a large number of samples. For the prediction of failure mechanisms, we rely on the phase-field approach which is a widely adopted framework for modeling and computing the fracture phenomena in solids. Incremental perturbed minimization principles for a class of gradient-type dissipative materials are used to derive the perturbed governing equations. This analysis enables us to study the highly heterogeneous microstructure and monitor the uncertainty in failure mechanics. Several numerical examples are given to examine the efficiency of the proposed method." @default.
- W4286484345 created "2022-07-22" @default.
- W4286484345 creator A5013488904 @default.
- W4286484345 creator A5020508945 @default.
- W4286484345 creator A5055129735 @default.
- W4286484345 date "2022-09-01" @default.
- W4286484345 modified "2023-09-26" @default.
- W4286484345 title "Probabilistic failure mechanisms via Monte Carlo simulations of complex microstructures" @default.
- W4286484345 cites W1600951102 @default.
- W4286484345 cites W1978501336 @default.
- W4286484345 cites W1996486047 @default.
- W4286484345 cites W2017476964 @default.
- W4286484345 cites W2018210046 @default.
- W4286484345 cites W2019519714 @default.
- W4286484345 cites W2031603526 @default.
- W4286484345 cites W2034773552 @default.
- W4286484345 cites W2042211262 @default.
- W4286484345 cites W2042841050 @default.
- W4286484345 cites W2052271668 @default.
- W4286484345 cites W2064332562 @default.
- W4286484345 cites W2068228228 @default.
- W4286484345 cites W2076184169 @default.
- W4286484345 cites W2077520165 @default.
- W4286484345 cites W2080146059 @default.
- W4286484345 cites W2097532978 @default.
- W4286484345 cites W2099041856 @default.
- W4286484345 cites W2114207581 @default.
- W4286484345 cites W2126980197 @default.
- W4286484345 cites W2130091774 @default.
- W4286484345 cites W2135891542 @default.
- W4286484345 cites W2159555138 @default.
- W4286484345 cites W2163927148 @default.
- W4286484345 cites W2401736509 @default.
- W4286484345 cites W2539153987 @default.
- W4286484345 cites W2685500084 @default.
- W4286484345 cites W2721856307 @default.
- W4286484345 cites W2749723587 @default.
- W4286484345 cites W2766970944 @default.
- W4286484345 cites W2796743165 @default.
- W4286484345 cites W2808870747 @default.
- W4286484345 cites W2889568561 @default.
- W4286484345 cites W2891606974 @default.
- W4286484345 cites W2903982600 @default.
- W4286484345 cites W2922263837 @default.
- W4286484345 cites W2935960864 @default.
- W4286484345 cites W2954885732 @default.
- W4286484345 cites W2964218952 @default.
- W4286484345 cites W2970674870 @default.
- W4286484345 cites W2979205320 @default.
- W4286484345 cites W3000593508 @default.
- W4286484345 cites W3001312051 @default.
- W4286484345 cites W3006289708 @default.
- W4286484345 cites W3006797090 @default.
- W4286484345 cites W3013992918 @default.
- W4286484345 cites W3038848320 @default.
- W4286484345 cites W3041444955 @default.
- W4286484345 cites W3042318967 @default.
- W4286484345 cites W3045486394 @default.
- W4286484345 cites W3080276208 @default.
- W4286484345 cites W3080678949 @default.
- W4286484345 cites W3088253038 @default.
- W4286484345 cites W3092534204 @default.
- W4286484345 cites W3107541746 @default.
- W4286484345 cites W3110585066 @default.
- W4286484345 cites W3112390046 @default.
- W4286484345 cites W3113692253 @default.
- W4286484345 cites W3115632005 @default.
- W4286484345 cites W3121322459 @default.
- W4286484345 cites W3123909791 @default.
- W4286484345 cites W3134751501 @default.
- W4286484345 cites W3149474751 @default.
- W4286484345 cites W3153334076 @default.
- W4286484345 cites W3156238886 @default.
- W4286484345 cites W3159656798 @default.
- W4286484345 cites W3178027639 @default.
- W4286484345 cites W3180325516 @default.
- W4286484345 cites W3185403272 @default.
- W4286484345 cites W3186618310 @default.
- W4286484345 cites W3197802439 @default.
- W4286484345 cites W3211569525 @default.
- W4286484345 cites W3213609402 @default.
- W4286484345 cites W3216037700 @default.
- W4286484345 cites W4210742700 @default.
- W4286484345 cites W4211017756 @default.
- W4286484345 cites W4220954250 @default.
- W4286484345 cites W4225148349 @default.
- W4286484345 cites W4225851353 @default.
- W4286484345 cites W4226164568 @default.
- W4286484345 cites W4239097771 @default.
- W4286484345 cites W4281260783 @default.
- W4286484345 cites W4281859291 @default.
- W4286484345 cites W4283074636 @default.
- W4286484345 cites W4283205639 @default.
- W4286484345 doi "https://doi.org/10.1016/j.cma.2022.115358" @default.
- W4286484345 hasPublicationYear "2022" @default.
- W4286484345 type Work @default.
- W4286484345 citedByCount "10" @default.
- W4286484345 countsByYear W42864843452022 @default.