Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286497130> ?p ?o ?g. }
- W4286497130 endingPage "026010602211139" @default.
- W4286497130 startingPage "026010602211139" @default.
- W4286497130 abstract "Nuts are nutrient-dense foods that contribute to healthier eating. Food image datasets enable artificial intelligence (AI) powered diet-tracking apps to help people monitor daily eating patterns.This study aimed to create an image dataset of commonly consumed nut types and use it to build an AI computer vision model to automate nut type classification tasks.iPhone 11 was used to take photos of 11 nut types-almond, brazil nut, cashew, chestnut, hazelnut, macadamia, peanut, pecan, pine nut, pistachio, and walnut. The dataset contains 2200 images, 200 per nut type. The dataset was randomly split into the training (60% or 1320 images), validation (20% or 440 images), and test sets (20% or 440 images). A neural network model was constructed and trained using transfer learning and other computer vision techniques-data augmentation, mixup, normalization, label smoothing, and learning rate optimization.The trained neural network model correctly predicted 338 out of 440 images (40 per nut type) in the validation set, achieving 99.55% accuracy. Moreover, the model classified the 440 images in the test set with 100% accuracy.This study built a nut image dataset and used it to train a neural network model to classify images by nut type. The model achieved near-perfect accuracy on the validation and test sets, demonstrating the feasibility of automating nut type classification using smartphone photos. Being made open-source, the dataset and model can assist the development of diet-tracking apps that facilitate users' adoption and adherence to a healthy diet." @default.
- W4286497130 created "2022-07-22" @default.
- W4286497130 creator A5002313901 @default.
- W4286497130 creator A5029893291 @default.
- W4286497130 creator A5088552385 @default.
- W4286497130 date "2022-07-21" @default.
- W4286497130 modified "2023-10-18" @default.
- W4286497130 title "We got nuts! use deep neural networks to classify images of common edible nuts" @default.
- W4286497130 cites W1558636945 @default.
- W4286497130 cites W2015720031 @default.
- W4286497130 cites W2034329541 @default.
- W4286497130 cites W2034886634 @default.
- W4286497130 cites W2067229293 @default.
- W4286497130 cites W2122338950 @default.
- W4286497130 cites W2127688898 @default.
- W4286497130 cites W2147850044 @default.
- W4286497130 cites W2158091269 @default.
- W4286497130 cites W2165698076 @default.
- W4286497130 cites W2183341477 @default.
- W4286497130 cites W2194775991 @default.
- W4286497130 cites W2489641161 @default.
- W4286497130 cites W2557707278 @default.
- W4286497130 cites W2735638749 @default.
- W4286497130 cites W2769775257 @default.
- W4286497130 cites W2772493195 @default.
- W4286497130 cites W2807383083 @default.
- W4286497130 cites W2808783182 @default.
- W4286497130 cites W2890929258 @default.
- W4286497130 cites W2901312569 @default.
- W4286497130 cites W2919115771 @default.
- W4286497130 cites W2937971823 @default.
- W4286497130 cites W3038004684 @default.
- W4286497130 cites W3121349251 @default.
- W4286497130 cites W3137695951 @default.
- W4286497130 cites W3155935899 @default.
- W4286497130 cites W3167751320 @default.
- W4286497130 cites W3198350258 @default.
- W4286497130 cites W3200783752 @default.
- W4286497130 cites W4212793419 @default.
- W4286497130 doi "https://doi.org/10.1177/02601060221113928" @default.
- W4286497130 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35861193" @default.
- W4286497130 hasPublicationYear "2022" @default.
- W4286497130 type Work @default.
- W4286497130 citedByCount "3" @default.
- W4286497130 countsByYear W42864971302022 @default.
- W4286497130 countsByYear W42864971302023 @default.
- W4286497130 crossrefType "journal-article" @default.
- W4286497130 hasAuthorship W4286497130A5002313901 @default.
- W4286497130 hasAuthorship W4286497130A5029893291 @default.
- W4286497130 hasAuthorship W4286497130A5088552385 @default.
- W4286497130 hasConcept C108583219 @default.
- W4286497130 hasConcept C119857082 @default.
- W4286497130 hasConcept C127413603 @default.
- W4286497130 hasConcept C136886441 @default.
- W4286497130 hasConcept C144024400 @default.
- W4286497130 hasConcept C153180895 @default.
- W4286497130 hasConcept C154945302 @default.
- W4286497130 hasConcept C169903167 @default.
- W4286497130 hasConcept C177264268 @default.
- W4286497130 hasConcept C19165224 @default.
- W4286497130 hasConcept C199360897 @default.
- W4286497130 hasConcept C206391251 @default.
- W4286497130 hasConcept C31972630 @default.
- W4286497130 hasConcept C3770464 @default.
- W4286497130 hasConcept C41008148 @default.
- W4286497130 hasConcept C50644808 @default.
- W4286497130 hasConcept C66938386 @default.
- W4286497130 hasConceptScore W4286497130C108583219 @default.
- W4286497130 hasConceptScore W4286497130C119857082 @default.
- W4286497130 hasConceptScore W4286497130C127413603 @default.
- W4286497130 hasConceptScore W4286497130C136886441 @default.
- W4286497130 hasConceptScore W4286497130C144024400 @default.
- W4286497130 hasConceptScore W4286497130C153180895 @default.
- W4286497130 hasConceptScore W4286497130C154945302 @default.
- W4286497130 hasConceptScore W4286497130C169903167 @default.
- W4286497130 hasConceptScore W4286497130C177264268 @default.
- W4286497130 hasConceptScore W4286497130C19165224 @default.
- W4286497130 hasConceptScore W4286497130C199360897 @default.
- W4286497130 hasConceptScore W4286497130C206391251 @default.
- W4286497130 hasConceptScore W4286497130C31972630 @default.
- W4286497130 hasConceptScore W4286497130C3770464 @default.
- W4286497130 hasConceptScore W4286497130C41008148 @default.
- W4286497130 hasConceptScore W4286497130C50644808 @default.
- W4286497130 hasConceptScore W4286497130C66938386 @default.
- W4286497130 hasLocation W42864971301 @default.
- W4286497130 hasLocation W42864971302 @default.
- W4286497130 hasOpenAccess W4286497130 @default.
- W4286497130 hasPrimaryLocation W42864971301 @default.
- W4286497130 hasRelatedWork W3014300295 @default.
- W4286497130 hasRelatedWork W3099765033 @default.
- W4286497130 hasRelatedWork W3164822677 @default.
- W4286497130 hasRelatedWork W4223943233 @default.
- W4286497130 hasRelatedWork W4225161397 @default.
- W4286497130 hasRelatedWork W4312200629 @default.
- W4286497130 hasRelatedWork W4360585206 @default.
- W4286497130 hasRelatedWork W4364306694 @default.
- W4286497130 hasRelatedWork W4380075502 @default.
- W4286497130 hasRelatedWork W4380086463 @default.