Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286500544> ?p ?o ?g. }
- W4286500544 endingPage "3277" @default.
- W4286500544 startingPage "3266" @default.
- W4286500544 abstract "Abstract Our study is to build an aftershock catalog with a low magnitude of completeness for the 2020 Mw 6.5 Stanley, Idaho, earthquake. This is challenging because of the low signal-to-noise ratios for recorded seismograms. Therefore, we apply convolutional neural networks (CNNs) and use 2D time–frequency feature maps as inputs for aftershock detection. Another trained CNN is used to automatically pick P-wave arrival times, which are then used in both nonlinear and double-difference earthquake location algorithms. Our new one-month-long catalog has 4644 events and a completeness magnitude (Mc) 1.9, which has over seven times more events and 0.9 lower Mc than the current U.S. Geological Survey National Earthquake Information Center catalog. The distribution and expansion of these aftershocks improve the resolution of two north-northwest-trending faults with different dip angles, providing further support for a central stepover region that changed the earthquake rupture trajectory and induced sustained seismicity." @default.
- W4286500544 created "2022-07-22" @default.
- W4286500544 creator A5010436195 @default.
- W4286500544 creator A5014344003 @default.
- W4286500544 creator A5046140300 @default.
- W4286500544 creator A5055979975 @default.
- W4286500544 creator A5063919524 @default.
- W4286500544 creator A5067277801 @default.
- W4286500544 creator A5087032728 @default.
- W4286500544 date "2022-07-21" @default.
- W4286500544 modified "2023-10-14" @default.
- W4286500544 title "Detecting and Locating Aftershocks for the 2020 Mw 6.5 Stanley, Idaho, Earthquake Using Convolutional Neural Networks" @default.
- W4286500544 cites W1205391184 @default.
- W4286500544 cites W1904429860 @default.
- W4286500544 cites W1919999760 @default.
- W4286500544 cites W1935060412 @default.
- W4286500544 cites W1970831581 @default.
- W4286500544 cites W1973690462 @default.
- W4286500544 cites W1978216542 @default.
- W4286500544 cites W1984501945 @default.
- W4286500544 cites W1999287311 @default.
- W4286500544 cites W1999992565 @default.
- W4286500544 cites W2006311736 @default.
- W4286500544 cites W2010160094 @default.
- W4286500544 cites W2011301426 @default.
- W4286500544 cites W2055524466 @default.
- W4286500544 cites W2077990646 @default.
- W4286500544 cites W2099857446 @default.
- W4286500544 cites W2102919512 @default.
- W4286500544 cites W2112393517 @default.
- W4286500544 cites W2126475580 @default.
- W4286500544 cites W2132547391 @default.
- W4286500544 cites W2166423844 @default.
- W4286500544 cites W2169133017 @default.
- W4286500544 cites W2345967539 @default.
- W4286500544 cites W2460847425 @default.
- W4286500544 cites W2514408638 @default.
- W4286500544 cites W2528961483 @default.
- W4286500544 cites W2762410434 @default.
- W4286500544 cites W2798828763 @default.
- W4286500544 cites W2799565130 @default.
- W4286500544 cites W2895546528 @default.
- W4286500544 cites W2910087333 @default.
- W4286500544 cites W2935862809 @default.
- W4286500544 cites W2964121744 @default.
- W4286500544 cites W2972175553 @default.
- W4286500544 cites W3115757170 @default.
- W4286500544 cites W3157441131 @default.
- W4286500544 cites W3157951468 @default.
- W4286500544 cites W3196810282 @default.
- W4286500544 cites W3111266714 @default.
- W4286500544 doi "https://doi.org/10.1785/0220210341" @default.
- W4286500544 hasPublicationYear "2022" @default.
- W4286500544 type Work @default.
- W4286500544 citedByCount "1" @default.
- W4286500544 crossrefType "journal-article" @default.
- W4286500544 hasAuthorship W4286500544A5010436195 @default.
- W4286500544 hasAuthorship W4286500544A5014344003 @default.
- W4286500544 hasAuthorship W4286500544A5046140300 @default.
- W4286500544 hasAuthorship W4286500544A5055979975 @default.
- W4286500544 hasAuthorship W4286500544A5063919524 @default.
- W4286500544 hasAuthorship W4286500544A5067277801 @default.
- W4286500544 hasAuthorship W4286500544A5087032728 @default.
- W4286500544 hasConcept C11413529 @default.
- W4286500544 hasConcept C121332964 @default.
- W4286500544 hasConcept C126691448 @default.
- W4286500544 hasConcept C127313418 @default.
- W4286500544 hasConcept C1276947 @default.
- W4286500544 hasConcept C13280743 @default.
- W4286500544 hasConcept C134306372 @default.
- W4286500544 hasConcept C154945302 @default.
- W4286500544 hasConcept C156801008 @default.
- W4286500544 hasConcept C165205528 @default.
- W4286500544 hasConcept C169744125 @default.
- W4286500544 hasConcept C17231256 @default.
- W4286500544 hasConcept C2780937219 @default.
- W4286500544 hasConcept C33923547 @default.
- W4286500544 hasConcept C41008148 @default.
- W4286500544 hasConcept C81363708 @default.
- W4286500544 hasConcept C83176761 @default.
- W4286500544 hasConceptScore W4286500544C11413529 @default.
- W4286500544 hasConceptScore W4286500544C121332964 @default.
- W4286500544 hasConceptScore W4286500544C126691448 @default.
- W4286500544 hasConceptScore W4286500544C127313418 @default.
- W4286500544 hasConceptScore W4286500544C1276947 @default.
- W4286500544 hasConceptScore W4286500544C13280743 @default.
- W4286500544 hasConceptScore W4286500544C134306372 @default.
- W4286500544 hasConceptScore W4286500544C154945302 @default.
- W4286500544 hasConceptScore W4286500544C156801008 @default.
- W4286500544 hasConceptScore W4286500544C165205528 @default.
- W4286500544 hasConceptScore W4286500544C169744125 @default.
- W4286500544 hasConceptScore W4286500544C17231256 @default.
- W4286500544 hasConceptScore W4286500544C2780937219 @default.
- W4286500544 hasConceptScore W4286500544C33923547 @default.
- W4286500544 hasConceptScore W4286500544C41008148 @default.
- W4286500544 hasConceptScore W4286500544C81363708 @default.
- W4286500544 hasConceptScore W4286500544C83176761 @default.
- W4286500544 hasIssue "6" @default.