Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286500596> ?p ?o ?g. }
- W4286500596 abstract "This study aims to compare the performance of multiple linear regression and machine learning algorithms for predicting manure nitrogen excretion in lactating dairy cows, and to develop new machine learning prediction models for MN excretion. Dataset used were collated from 43 total diet digestibility studies with 951 lactating dairy cows. Prediction models for MN were developed and evaluated using MLR technique and three machine learning algorithms, artificial neural networks, random forest regression and support vector regression. The ANN model produced a lower RMSE and a higher CCC, compared to the MLR, RFR and SVR model, in the tenfold cross validation. Meanwhile, a hybrid knowledge-based and data-driven approach was developed and implemented to selecting features in this study. Results showed that the performance of ANN models were greatly improved by the turning process of selection of features and learning algorithms. The proposed new ANN models for prediction of MN were developed using nitrogen intake as the primary predictor. Alternative models were also developed based on live weight and milk yield for use in the condition where nitrogen intake data are not available (e.g., in some commercial farms). These new models provide benchmark information for prediction and mitigation of nitrogen excretion under typical dairy production conditions managed within grassland-based dairy systems." @default.
- W4286500596 created "2022-07-22" @default.
- W4286500596 creator A5020900513 @default.
- W4286500596 creator A5024401909 @default.
- W4286500596 creator A5037873650 @default.
- W4286500596 creator A5051752813 @default.
- W4286500596 date "2022-07-21" @default.
- W4286500596 modified "2023-09-26" @default.
- W4286500596 title "Can machine learning algorithms perform better than multiple linear regression in predicting nitrogen excretion from lactating dairy cows" @default.
- W4286500596 cites W1980663616 @default.
- W4286500596 cites W1986954615 @default.
- W4286500596 cites W2000532370 @default.
- W4286500596 cites W2010150056 @default.
- W4286500596 cites W2015263929 @default.
- W4286500596 cites W2047539274 @default.
- W4286500596 cites W2063757041 @default.
- W4286500596 cites W2066860809 @default.
- W4286500596 cites W2075945260 @default.
- W4286500596 cites W2078801194 @default.
- W4286500596 cites W2081956134 @default.
- W4286500596 cites W2084439920 @default.
- W4286500596 cites W2105101734 @default.
- W4286500596 cites W2108703480 @default.
- W4286500596 cites W2109366237 @default.
- W4286500596 cites W2114324571 @default.
- W4286500596 cites W2117882663 @default.
- W4286500596 cites W2131335388 @default.
- W4286500596 cites W2144959160 @default.
- W4286500596 cites W2160494616 @default.
- W4286500596 cites W2313339984 @default.
- W4286500596 cites W2770278675 @default.
- W4286500596 cites W2911964244 @default.
- W4286500596 cites W2947963959 @default.
- W4286500596 cites W2965101826 @default.
- W4286500596 cites W2968214372 @default.
- W4286500596 cites W2969301077 @default.
- W4286500596 cites W2997108653 @default.
- W4286500596 cites W3015198856 @default.
- W4286500596 cites W3047879827 @default.
- W4286500596 cites W3127834220 @default.
- W4286500596 cites W3158462756 @default.
- W4286500596 cites W4236357753 @default.
- W4286500596 cites W94052953 @default.
- W4286500596 doi "https://doi.org/10.1038/s41598-022-16490-y" @default.
- W4286500596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35864287" @default.
- W4286500596 hasPublicationYear "2022" @default.
- W4286500596 type Work @default.
- W4286500596 citedByCount "3" @default.
- W4286500596 countsByYear W42865005962022 @default.
- W4286500596 countsByYear W42865005962023 @default.
- W4286500596 crossrefType "journal-article" @default.
- W4286500596 hasAuthorship W4286500596A5020900513 @default.
- W4286500596 hasAuthorship W4286500596A5024401909 @default.
- W4286500596 hasAuthorship W4286500596A5037873650 @default.
- W4286500596 hasAuthorship W4286500596A5051752813 @default.
- W4286500596 hasBestOaLocation W42865005961 @default.
- W4286500596 hasConcept C10146269 @default.
- W4286500596 hasConcept C105795698 @default.
- W4286500596 hasConcept C11413529 @default.
- W4286500596 hasConcept C119857082 @default.
- W4286500596 hasConcept C12267149 @default.
- W4286500596 hasConcept C13280743 @default.
- W4286500596 hasConcept C140793950 @default.
- W4286500596 hasConcept C148483581 @default.
- W4286500596 hasConcept C152877465 @default.
- W4286500596 hasConcept C154945302 @default.
- W4286500596 hasConcept C169258074 @default.
- W4286500596 hasConcept C170964787 @default.
- W4286500596 hasConcept C185798385 @default.
- W4286500596 hasConcept C205649164 @default.
- W4286500596 hasConcept C2776977481 @default.
- W4286500596 hasConcept C33923547 @default.
- W4286500596 hasConcept C41008148 @default.
- W4286500596 hasConcept C45804977 @default.
- W4286500596 hasConcept C48921125 @default.
- W4286500596 hasConcept C50644808 @default.
- W4286500596 hasConcept C55493867 @default.
- W4286500596 hasConcept C83546350 @default.
- W4286500596 hasConcept C86803240 @default.
- W4286500596 hasConceptScore W4286500596C10146269 @default.
- W4286500596 hasConceptScore W4286500596C105795698 @default.
- W4286500596 hasConceptScore W4286500596C11413529 @default.
- W4286500596 hasConceptScore W4286500596C119857082 @default.
- W4286500596 hasConceptScore W4286500596C12267149 @default.
- W4286500596 hasConceptScore W4286500596C13280743 @default.
- W4286500596 hasConceptScore W4286500596C140793950 @default.
- W4286500596 hasConceptScore W4286500596C148483581 @default.
- W4286500596 hasConceptScore W4286500596C152877465 @default.
- W4286500596 hasConceptScore W4286500596C154945302 @default.
- W4286500596 hasConceptScore W4286500596C169258074 @default.
- W4286500596 hasConceptScore W4286500596C170964787 @default.
- W4286500596 hasConceptScore W4286500596C185798385 @default.
- W4286500596 hasConceptScore W4286500596C205649164 @default.
- W4286500596 hasConceptScore W4286500596C2776977481 @default.
- W4286500596 hasConceptScore W4286500596C33923547 @default.
- W4286500596 hasConceptScore W4286500596C41008148 @default.
- W4286500596 hasConceptScore W4286500596C45804977 @default.
- W4286500596 hasConceptScore W4286500596C48921125 @default.
- W4286500596 hasConceptScore W4286500596C50644808 @default.
- W4286500596 hasConceptScore W4286500596C55493867 @default.