Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286500754> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4286500754 abstract "Abstract. The use of meteorological radars to study snowfall microphysical properties and processes is well established, in particular through two techniques: the use of multi-frequency radar measurements and the analysis of radar Doppler spectra. We propose a novel approach to retrieve snowfall properties by combining both techniques, while relaxing some assumptions on e.g. beam matching and non-turbulent atmosphere. The method relies on a two-step deep-learning framework inspired from data compression techniques: an encoder model maps a high-dimensional signal to a lower-dimensional “latent” space, while the decoder reconstructs the original signal from this latent space. Here, Doppler spectrograms at two frequencies constitute the high-dimensional input, while the latent features are constrained to represent the snowfall properties of interest. The decoder network is first trained to emulate Doppler spectra from a set of microphysical variables, using simulations from the radiative transfer model PAMTRA as training data. In a second step, the encoder network learns the inverse mapping, from real measured dual-frequency spectrograms to the microphysical latent space; doing so, it leverages the spatial consistency of the measurements to mitigate the problem's ill-posedness. The method was implemented on X- and W-band data from the ICE GENESIS campaign that took place in the Swiss Jura in January 2021. An in-depth assessment of the retrieval’s accuracy was performed through comparisons with colocated aircraft in-situ measurements collected during 3 precipitation events. The agreement is overall good and opens up possibilities for acute characterization of snowfall microphysics on larger datasets. A discussion of the method's sensitivity and limitations is also conducted. The main contribution of this work is on the one hand the theoretical framework itself, which can be applied to other remote sensing retrieval applications and is thus possibly of interest to a broad audience across atmospheric sciences. On the other hand, the retrieved seven microphysical descriptors provide relevant insights into snowfall processes." @default.
- W4286500754 created "2022-07-22" @default.
- W4286500754 creator A5004997242 @default.
- W4286500754 creator A5026761885 @default.
- W4286500754 creator A5034599284 @default.
- W4286500754 creator A5046876775 @default.
- W4286500754 creator A5047848426 @default.
- W4286500754 creator A5087382048 @default.
- W4286500754 date "2022-07-21" @default.
- W4286500754 modified "2023-10-17" @default.
- W4286500754 title "Dual-frequency spectral radar retrieval of snowfall microphysics: a physically constrained deep learning approach" @default.
- W4286500754 doi "https://doi.org/10.5194/amt-2022-199" @default.
- W4286500754 hasPublicationYear "2022" @default.
- W4286500754 type Work @default.
- W4286500754 citedByCount "0" @default.
- W4286500754 crossrefType "posted-content" @default.
- W4286500754 hasAuthorship W4286500754A5004997242 @default.
- W4286500754 hasAuthorship W4286500754A5026761885 @default.
- W4286500754 hasAuthorship W4286500754A5034599284 @default.
- W4286500754 hasAuthorship W4286500754A5046876775 @default.
- W4286500754 hasAuthorship W4286500754A5047848426 @default.
- W4286500754 hasAuthorship W4286500754A5087382048 @default.
- W4286500754 hasBestOaLocation W42865007541 @default.
- W4286500754 hasConcept C108583219 @default.
- W4286500754 hasConcept C121332964 @default.
- W4286500754 hasConcept C127313418 @default.
- W4286500754 hasConcept C1276947 @default.
- W4286500754 hasConcept C142757262 @default.
- W4286500754 hasConcept C153294291 @default.
- W4286500754 hasConcept C154945302 @default.
- W4286500754 hasConcept C197046000 @default.
- W4286500754 hasConcept C205649164 @default.
- W4286500754 hasConcept C2778559676 @default.
- W4286500754 hasConcept C41008148 @default.
- W4286500754 hasConcept C45273575 @default.
- W4286500754 hasConcept C554190296 @default.
- W4286500754 hasConcept C62649853 @default.
- W4286500754 hasConcept C76155785 @default.
- W4286500754 hasConceptScore W4286500754C108583219 @default.
- W4286500754 hasConceptScore W4286500754C121332964 @default.
- W4286500754 hasConceptScore W4286500754C127313418 @default.
- W4286500754 hasConceptScore W4286500754C1276947 @default.
- W4286500754 hasConceptScore W4286500754C142757262 @default.
- W4286500754 hasConceptScore W4286500754C153294291 @default.
- W4286500754 hasConceptScore W4286500754C154945302 @default.
- W4286500754 hasConceptScore W4286500754C197046000 @default.
- W4286500754 hasConceptScore W4286500754C205649164 @default.
- W4286500754 hasConceptScore W4286500754C2778559676 @default.
- W4286500754 hasConceptScore W4286500754C41008148 @default.
- W4286500754 hasConceptScore W4286500754C45273575 @default.
- W4286500754 hasConceptScore W4286500754C554190296 @default.
- W4286500754 hasConceptScore W4286500754C62649853 @default.
- W4286500754 hasConceptScore W4286500754C76155785 @default.
- W4286500754 hasFunder F4320335254 @default.
- W4286500754 hasLocation W42865007541 @default.
- W4286500754 hasLocation W42865007542 @default.
- W4286500754 hasLocation W42865007543 @default.
- W4286500754 hasOpenAccess W4286500754 @default.
- W4286500754 hasPrimaryLocation W42865007541 @default.
- W4286500754 hasRelatedWork W10080208 @default.
- W4286500754 hasRelatedWork W11888719 @default.
- W4286500754 hasRelatedWork W2978140 @default.
- W4286500754 hasRelatedWork W4010424 @default.
- W4286500754 hasRelatedWork W5600835 @default.
- W4286500754 hasRelatedWork W58316 @default.
- W4286500754 hasRelatedWork W6833734 @default.
- W4286500754 hasRelatedWork W7138438 @default.
- W4286500754 hasRelatedWork W7229779 @default.
- W4286500754 hasRelatedWork W8621169 @default.
- W4286500754 isParatext "false" @default.
- W4286500754 isRetracted "false" @default.
- W4286500754 workType "article" @default.