Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286509899> ?p ?o ?g. }
- W4286509899 endingPage "100815" @default.
- W4286509899 startingPage "100815" @default.
- W4286509899 abstract "With the rising freight demand, specialized heavy-haul railway corridors allow heavier trains to transport heavy freight, improving productivity and lowering unit costs. Generally, a heavy-haul corridor necessitates a significant investment, thus the risk assessment of a rail-track system must be extensively evaluated during the design phase. From the standpoint of serviceability, this study presents a probabilistic slope stability analysis of heavy-haul freight corridor using an efficient hybrid computational technique. The present approach, i.e., ANN-MPA, is an amalgamation of an artificial neural network (ANN) and marine predators algorithm (MPA). The newly constructed ANN-MPA was used to perform probabilistic analysis of a 12.293 m high embankment of heavy-haul freight corridor of Indian Railways with a design axle load of 32.5 MT. The concept of probability theory and statistics were used to map the soil uncertainties through the first-order second-moment method. The results of the proposed ANN-MPA model were evaluated and compared with other hybrid ANNs constructed with seven distinct swarm intelligence algorithms. In the validation phase, the proposed ANN-MPA outperformed (R2 = 0.9931 and RMSE = 0.0233) other hybrid ANNs and was used to perform probabilistic analysis of a 12.293 m high embankment. The reliability index and the probability of failure were computed under seismic and non-seismic conditions, taking into consideration the influence of uncertainties in soil parameters. Using the proposed approach, the failure probability of the 12.293 m high soil slope under different seismic conditions can be evaluated rationally and efficiently." @default.
- W4286509899 created "2022-07-22" @default.
- W4286509899 creator A5004350213 @default.
- W4286509899 creator A5064414390 @default.
- W4286509899 date "2022-11-01" @default.
- W4286509899 modified "2023-10-05" @default.
- W4286509899 title "Probabilistic slope stability analysis of Heavy-haul freight corridor using a hybrid machine learning paradigm" @default.
- W4286509899 cites W1595159159 @default.
- W4286509899 cites W1605438009 @default.
- W4286509899 cites W1888960377 @default.
- W4286509899 cites W1968370297 @default.
- W4286509899 cites W1972550919 @default.
- W4286509899 cites W1974300616 @default.
- W4286509899 cites W1975048675 @default.
- W4286509899 cites W1976744965 @default.
- W4286509899 cites W1984762043 @default.
- W4286509899 cites W1985460844 @default.
- W4286509899 cites W1991548802 @default.
- W4286509899 cites W1993885071 @default.
- W4286509899 cites W1997600725 @default.
- W4286509899 cites W2001979953 @default.
- W4286509899 cites W2014715727 @default.
- W4286509899 cites W2016160018 @default.
- W4286509899 cites W2024060531 @default.
- W4286509899 cites W2033011996 @default.
- W4286509899 cites W2041629655 @default.
- W4286509899 cites W2061438946 @default.
- W4286509899 cites W2069527243 @default.
- W4286509899 cites W2072955302 @default.
- W4286509899 cites W2073424237 @default.
- W4286509899 cites W2101395946 @default.
- W4286509899 cites W2122445794 @default.
- W4286509899 cites W2125281549 @default.
- W4286509899 cites W2132250814 @default.
- W4286509899 cites W2143560894 @default.
- W4286509899 cites W2152195021 @default.
- W4286509899 cites W2163902342 @default.
- W4286509899 cites W2168081761 @default.
- W4286509899 cites W2172414771 @default.
- W4286509899 cites W2232317135 @default.
- W4286509899 cites W2268859841 @default.
- W4286509899 cites W2290883490 @default.
- W4286509899 cites W2489674748 @default.
- W4286509899 cites W2574661617 @default.
- W4286509899 cites W2585392941 @default.
- W4286509899 cites W2587345921 @default.
- W4286509899 cites W2589690302 @default.
- W4286509899 cites W2738900493 @default.
- W4286509899 cites W2773918105 @default.
- W4286509899 cites W2791778019 @default.
- W4286509899 cites W2895224823 @default.
- W4286509899 cites W2901363875 @default.
- W4286509899 cites W2919979744 @default.
- W4286509899 cites W2933860896 @default.
- W4286509899 cites W2947685331 @default.
- W4286509899 cites W2954464033 @default.
- W4286509899 cites W2964477763 @default.
- W4286509899 cites W2980539464 @default.
- W4286509899 cites W2985845430 @default.
- W4286509899 cites W2994818485 @default.
- W4286509899 cites W2996991292 @default.
- W4286509899 cites W2997985521 @default.
- W4286509899 cites W3000461720 @default.
- W4286509899 cites W3011104345 @default.
- W4286509899 cites W3014974411 @default.
- W4286509899 cites W3016813500 @default.
- W4286509899 cites W3019645317 @default.
- W4286509899 cites W3038102268 @default.
- W4286509899 cites W3039159666 @default.
- W4286509899 cites W3043854718 @default.
- W4286509899 cites W3119802092 @default.
- W4286509899 cites W3153202096 @default.
- W4286509899 cites W3157900703 @default.
- W4286509899 cites W3159941795 @default.
- W4286509899 cites W3169902780 @default.
- W4286509899 cites W3180304721 @default.
- W4286509899 cites W3195428404 @default.
- W4286509899 cites W4205346657 @default.
- W4286509899 cites W4205502440 @default.
- W4286509899 cites W4205531456 @default.
- W4286509899 cites W4206280001 @default.
- W4286509899 cites W4225114460 @default.
- W4286509899 cites W4225624155 @default.
- W4286509899 cites W4226335935 @default.
- W4286509899 cites W4246598646 @default.
- W4286509899 cites W4253895407 @default.
- W4286509899 cites W883434633 @default.
- W4286509899 doi "https://doi.org/10.1016/j.trgeo.2022.100815" @default.
- W4286509899 hasPublicationYear "2022" @default.
- W4286509899 type Work @default.
- W4286509899 citedByCount "16" @default.
- W4286509899 countsByYear W42865098992022 @default.
- W4286509899 countsByYear W42865098992023 @default.
- W4286509899 crossrefType "journal-article" @default.
- W4286509899 hasAuthorship W4286509899A5004350213 @default.
- W4286509899 hasAuthorship W4286509899A5064414390 @default.
- W4286509899 hasConcept C105795698 @default.
- W4286509899 hasConcept C110245778 @default.